Existence of weak solutions for abstract hyperbolic-parabolic equations

In this paper we study the Existence and Uniqueness of solutions for the following Cauchy problem:A2u″(t)+A1u′(t)+A(t)u(t)+M(u(t))=f(t),   t∈(0,T)       (1)u(0)=u0;   A2u′(0)=A212u1;                      where A1 and A2 are bounded linear operators in a Hilbert space H, {A(t)}0≤t≤T is a family of se...

Full description

Saved in:
Bibliographic Details
Main Author: Marcondes Rodrigues Clark
Format: Article
Language:English
Published: Wiley 1994-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171294001067
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558135684890624
author Marcondes Rodrigues Clark
author_facet Marcondes Rodrigues Clark
author_sort Marcondes Rodrigues Clark
collection DOAJ
description In this paper we study the Existence and Uniqueness of solutions for the following Cauchy problem:A2u″(t)+A1u′(t)+A(t)u(t)+M(u(t))=f(t),   t∈(0,T)       (1)u(0)=u0;   A2u′(0)=A212u1;                      where A1 and A2 are bounded linear operators in a Hilbert space H, {A(t)}0≤t≤T is a family of self-adjoint operators, M is a non-linear map on H and f is a function from (0,T) with values in H.
format Article
id doaj-art-d5ea96dcc6cf4b2698e7d4a7da2539ba
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1994-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-d5ea96dcc6cf4b2698e7d4a7da2539ba2025-02-03T01:33:09ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251994-01-0117475976910.1155/S0161171294001067Existence of weak solutions for abstract hyperbolic-parabolic equationsMarcondes Rodrigues Clark0Universidade Federal da Paraíba - Campus II - DME - CCT, Campina Grande 58.109-970, Paraíba, BrazilIn this paper we study the Existence and Uniqueness of solutions for the following Cauchy problem:A2u″(t)+A1u′(t)+A(t)u(t)+M(u(t))=f(t),   t∈(0,T)       (1)u(0)=u0;   A2u′(0)=A212u1;                      where A1 and A2 are bounded linear operators in a Hilbert space H, {A(t)}0≤t≤T is a family of self-adjoint operators, M is a non-linear map on H and f is a function from (0,T) with values in H.http://dx.doi.org/10.1155/S0161171294001067existence of weak solutionsnonlinear equationCauchy problemexistence and uniqueness.
spellingShingle Marcondes Rodrigues Clark
Existence of weak solutions for abstract hyperbolic-parabolic equations
International Journal of Mathematics and Mathematical Sciences
existence of weak solutions
nonlinear equation
Cauchy problem
existence and uniqueness.
title Existence of weak solutions for abstract hyperbolic-parabolic equations
title_full Existence of weak solutions for abstract hyperbolic-parabolic equations
title_fullStr Existence of weak solutions for abstract hyperbolic-parabolic equations
title_full_unstemmed Existence of weak solutions for abstract hyperbolic-parabolic equations
title_short Existence of weak solutions for abstract hyperbolic-parabolic equations
title_sort existence of weak solutions for abstract hyperbolic parabolic equations
topic existence of weak solutions
nonlinear equation
Cauchy problem
existence and uniqueness.
url http://dx.doi.org/10.1155/S0161171294001067
work_keys_str_mv AT marcondesrodriguesclark existenceofweaksolutionsforabstracthyperbolicparabolicequations