Effects of Duct Cross Section Camber and Thickness on the Performance of Ducted Propulsion Systems for Aeronautical Applications

The axisymmetric flow field around a ducted rotor is thoroughly analysed by means of a nonlinear and semi-analytical model which is able to deal with some crucial aspects of shrouded systems like the interaction between the rotor and the duct, and the slipstream contraction and rotation. Not disrega...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodolfo Bontempo, Marcello Manna
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2016/8913901
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The axisymmetric flow field around a ducted rotor is thoroughly analysed by means of a nonlinear and semi-analytical model which is able to deal with some crucial aspects of shrouded systems like the interaction between the rotor and the duct, and the slipstream contraction and rotation. Not disregarding the more advanced CFD based methods, the proposed procedure is characterised by a very low computational cost that makes it very appealing as analysis tool in the preliminary steps of a design procedure of hierarchical type. The work focuses on the analysis of the effects of the camber and thickness of the duct cross section onto the performance of the device. It has been found that an augmentation of both camber and thickness of the duct leads to an increase of the propulsive ideal efficiency.
ISSN:1687-5966
1687-5974