Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment
Compared to conventional adsorbents, zinc-based metal–organic frameworks (MOFs) such as zeolite imidazolium skeleton-8 (ZIF-8) exhibit enhanced thermal, chemical, and structural stability. Nonetheless, their powdered form results in limited dispersibility in aqueous solutions and a tendency to aggre...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/5/982 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Compared to conventional adsorbents, zinc-based metal–organic frameworks (MOFs) such as zeolite imidazolium skeleton-8 (ZIF-8) exhibit enhanced thermal, chemical, and structural stability. Nonetheless, their powdered form results in limited dispersibility in aqueous solutions and a tendency to aggregate, which significantly restricts their utility in adsorption applications. This study reports a green composite aerogel through the in situ mineralization of ZIF-8 onto bacterial cellulose (BC) for the effective removal of toxic metal ions (Cu<sup>2+</sup>) and Congo red (CR) from wastewater. The ZIF@BC composite aerogel was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and specific surface area analysis. The findings indicated that the ZIF-8 produced were evenly distributed across the BC nanonetwork, facilitating effective adsorption of CR and Cu<sup>2+</sup>. The maximum adsorption capacities of the ZIF@BC aerogels were determined to be 397.55 mg/g for CR and 424.80 mg/g for Cu<sup>2+</sup>, as per the Langmuir isotherm. Furthermore, the ZIF-8@BC aerogels demonstrated excellent selectivity and reusability, particularly for CR adsorption. The proposed mechanism for the interaction between the composite aerogel and CR and Cu<sup>2+</sup> involves electrostatic interactions, hydrogen bonding, π-π bonding, coordination bonding, ion exchange, microchemical precipitation, and pore diffusion. This research offers significant promise for the utilization of MOF powders and highlights substantial industrial potential. |
|---|---|
| ISSN: | 1420-3049 |