The Topological Entropy of Cyclic Permutation Maps and Some Chaotic Properties on Their MPE sets

In this paper, we study some chaotic properties of s-dimensional dynamical system of the form Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1, where ak∈Hk for any k∈1,2,…,s, s≥2 is an integer, and Hk is a compact subinterval of the real line ℝ=−∞,+∞ for any k∈1,2,…,s. Particularly, a necessary and sufficient condi...

Full description

Saved in:
Bibliographic Details
Main Authors: Risong Li, Tianxiu Lu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/9379628
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study some chaotic properties of s-dimensional dynamical system of the form Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1, where ak∈Hk for any k∈1,2,…,s, s≥2 is an integer, and Hk is a compact subinterval of the real line ℝ=−∞,+∞ for any k∈1,2,…,s. Particularly, a necessary and sufficient condition for a cyclic permutation map Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1 to be LY-chaotic or h-chaotic or RT-chaotic or D-chaotic is obtained. Moreover, the LY-chaoticity, h-chaoticity, RT-chaoticity, and D-chaoticity of such a cyclic permutation map is explored. Also, we proved that the topological entropy hΨ of such a cyclic permutation map is the same as the topological entropy of each of the following maps: gj∘gj−1∘⋯∘g1l∘gs∘gs−1∘⋯∘gj+1, if j=1,…,s−1and gs∘gs−1∘⋯∘g1, and that Ψ is sensitive if and only if at least one of the coordinates maps of Ψs is sensitive.
ISSN:1076-2787
1099-0526