On the Effects of Modeling As-Manufactured Geometry: Toward Digital Twin

A simple, nonstandardized material test specimen, which fails along one of two different likely crack paths, is considered herein. The result of deviations in geometry on the order of tenths of a millimeter, this ambiguity in crack path motivates the consideration of as-manufactured component geomet...

Full description

Saved in:
Bibliographic Details
Main Authors: Albert Cerrone, Jacob Hochhalter, Gerd Heber, Anthony Ingraffea
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2014/439278
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple, nonstandardized material test specimen, which fails along one of two different likely crack paths, is considered herein. The result of deviations in geometry on the order of tenths of a millimeter, this ambiguity in crack path motivates the consideration of as-manufactured component geometry in the design, assessment, and certification of structural systems. Herein, finite element models of as-manufactured specimens are generated and subsequently analyzed to resolve the crack-path ambiguity. The consequence and benefit of such a “personalized” methodology is the prediction of a crack path for each specimen based on its as-manufactured geometry, rather than a distribution of possible specimen geometries or nominal geometry. The consideration of as-manufactured characteristics is central to the Digital Twin concept. Therefore, this work is also intended to motivate its development.
ISSN:1687-5966
1687-5974