On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators

This paper introduces a new class of multivariable operators called $ (n_1, \cdots, n_m) $-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators $ \mathcal{Q} = (\mathcal{Q}_1, \; \cdots, \mathcal{Q}_m) $ is said to be an $ (n_1, \cdots, n_m) $-hyponormal...

Full description

Saved in:
Bibliographic Details
Main Authors: Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241349?viewType=HTML
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850215027063128064
author Sid Ahmed Ould Beinane
Sid Ahmed Ould Ahmed Mahmoud
author_facet Sid Ahmed Ould Beinane
Sid Ahmed Ould Ahmed Mahmoud
author_sort Sid Ahmed Ould Beinane
collection DOAJ
description This paper introduces a new class of multivariable operators called $ (n_1, \cdots, n_m) $-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators $ \mathcal{Q} = (\mathcal{Q}_1, \; \cdots, \mathcal{Q}_m) $ is said to be an $ (n_1, \cdots, n_m) $-hyponormal tuple for some $ (n_1, \cdots, n_m)\in \mathbb{N}^m $ if</p><p class="disp_formula">$ \sum\limits_{1\leq k,\;l\leq m}\big\langle[\mathcal{Q}_k^{*n_k}, \;\mathcal{Q}_l^{n_l}]\omega_k\mid \omega_l\big\rangle\geq 0, \quad \forall\; (\omega_k)_{1\leq k\leq m}\in {\mathcal K}^m. $</p><p>We show several properties of this class that correspond to the properties of joint hyponormal operators.
format Article
id doaj-art-d47e015ee4774bb09313927eb1b4dbbf
institution OA Journals
issn 2473-6988
language English
publishDate 2024-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-d47e015ee4774bb09313927eb1b4dbbf2025-08-20T02:08:44ZengAIMS PressAIMS Mathematics2473-69882024-09-01910277842779610.3934/math.20241349On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operatorsSid Ahmed Ould Beinane 0Sid Ahmed Ould Ahmed Mahmoud1Mathematics Department, College of Science, Jouf University, Sakaka, P. O. Box 2014, Saudi ArabiaMathematics Department, College of Science, Jouf University, Sakaka, P. O. Box 2014, Saudi ArabiaThis paper introduces a new class of multivariable operators called $ (n_1, \cdots, n_m) $-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators $ \mathcal{Q} = (\mathcal{Q}_1, \; \cdots, \mathcal{Q}_m) $ is said to be an $ (n_1, \cdots, n_m) $-hyponormal tuple for some $ (n_1, \cdots, n_m)\in \mathbb{N}^m $ if</p><p class="disp_formula">$ \sum\limits_{1\leq k,\;l\leq m}\big\langle[\mathcal{Q}_k^{*n_k}, \;\mathcal{Q}_l^{n_l}]\omega_k\mid \omega_l\big\rangle\geq 0, \quad \forall\; (\omega_k)_{1\leq k\leq m}\in {\mathcal K}^m. $</p><p>We show several properties of this class that correspond to the properties of joint hyponormal operators.https://www.aimspress.com/article/doi/10.3934/math.20241349?viewType=HTMLhilbert spacenormal operatorn-hyponormal operatorcommuting tuple of operators
spellingShingle Sid Ahmed Ould Beinane
Sid Ahmed Ould Ahmed Mahmoud
On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
AIMS Mathematics
hilbert space
normal operator
n-hyponormal operator
commuting tuple of operators
title On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
title_full On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
title_fullStr On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
title_full_unstemmed On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
title_short On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
title_sort on n 1 cdots n m hyponormal tuples of hilbert space operators
topic hilbert space
normal operator
n-hyponormal operator
commuting tuple of operators
url https://www.aimspress.com/article/doi/10.3934/math.20241349?viewType=HTML
work_keys_str_mv AT sidahmedouldbeinane onn1cdotsnmhyponormaltuplesofhilbertspaceoperators
AT sidahmedouldahmedmahmoud onn1cdotsnmhyponormaltuplesofhilbertspaceoperators