Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating

This study investigates the energy performance of a combined solar underfloor heating and domestic hot water (DHW) system using an innovative approach that combines experimental data and mathematical modeling. The PieceWise Affine Auto-Regressive eXogenous (PWARX) model was employed to identify disc...

Full description

Saved in:
Bibliographic Details
Main Authors: Yassine Bouguergour, Sayeh Menhoudj, Abderrahmane Mejedoub Mokhtari, Karim Dehina, Abdelatif Zairi, Romain Mege, Mohammed-Hichem Benzaama
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X25001959
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849700427332845568
author Yassine Bouguergour
Sayeh Menhoudj
Abderrahmane Mejedoub Mokhtari
Karim Dehina
Abdelatif Zairi
Romain Mege
Mohammed-Hichem Benzaama
author_facet Yassine Bouguergour
Sayeh Menhoudj
Abderrahmane Mejedoub Mokhtari
Karim Dehina
Abdelatif Zairi
Romain Mege
Mohammed-Hichem Benzaama
author_sort Yassine Bouguergour
collection DOAJ
description This study investigates the energy performance of a combined solar underfloor heating and domestic hot water (DHW) system using an innovative approach that combines experimental data and mathematical modeling. The PieceWise Affine Auto-Regressive eXogenous (PWARX) model was employed to identify discrete operational states and optimize the system’s performance. Three configurations were analyzed under winter conditions: (1) the solar underfloor heating system achieved 130 % energy coverage, maintaining stable temperatures between 17 °C and 19.5 °C; (2) the DHW system with a 300 L storage tank recorded a 71 % coverage, optimizing circulator operation and thermal energy storage; and (3) the combined system demonstrated synergy between the components, balancing energy production with a minimum coverage of 45 %.The PWARX model identified four distinct operational states, correlating solar radiation with the system’s thermal response, providing insights for energy management and system optimization. The findings underline the potential of the PWARX model to enhance the design and efficiency of solar thermal systems. This study contributes to the energy transition by proposing effective and adaptable solutions for maximizing solar energy utilization in the residential sector.
format Article
id doaj-art-d47421411e2d47c88bcdbade397e9a6a
institution DOAJ
issn 2214-157X
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series Case Studies in Thermal Engineering
spelling doaj-art-d47421411e2d47c88bcdbade397e9a6a2025-08-20T03:18:16ZengElsevierCase Studies in Thermal Engineering2214-157X2025-05-016910593510.1016/j.csite.2025.105935Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heatingYassine Bouguergour0Sayeh Menhoudj1Abderrahmane Mejedoub Mokhtari2Karim Dehina3Abdelatif Zairi4Romain Mege5Mohammed-Hichem Benzaama6Laboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, Algeria; Corresponding author. Laboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, Algeria.Laboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, Algeria; Université d'Oran 2, Mohamed Ben Ahmed, AlgeriaLaboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, AlgeriaLaboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, AlgeriaLaboratoire de Matériaux Sols et Thermique (LMST), Faculté d’Architecture et Génie Civil, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, El M’naouar, Bir El Djir, 31000, Oran, AlgeriaInstitut de Recherche, ESTP, 28 Avenue du Président Wilson, F-94230, Cachan, FranceInstitut de Recherche, ESTP, 28 Avenue du Président Wilson, F-94230, Cachan, FranceThis study investigates the energy performance of a combined solar underfloor heating and domestic hot water (DHW) system using an innovative approach that combines experimental data and mathematical modeling. The PieceWise Affine Auto-Regressive eXogenous (PWARX) model was employed to identify discrete operational states and optimize the system’s performance. Three configurations were analyzed under winter conditions: (1) the solar underfloor heating system achieved 130 % energy coverage, maintaining stable temperatures between 17 °C and 19.5 °C; (2) the DHW system with a 300 L storage tank recorded a 71 % coverage, optimizing circulator operation and thermal energy storage; and (3) the combined system demonstrated synergy between the components, balancing energy production with a minimum coverage of 45 %.The PWARX model identified four distinct operational states, correlating solar radiation with the system’s thermal response, providing insights for energy management and system optimization. The findings underline the potential of the PWARX model to enhance the design and efficiency of solar thermal systems. This study contributes to the energy transition by proposing effective and adaptable solutions for maximizing solar energy utilization in the residential sector.http://www.sciencedirect.com/science/article/pii/S2214157X25001959Solar thermalDirect solar floorStorage tankManagement strategyMachine learningIdentification
spellingShingle Yassine Bouguergour
Sayeh Menhoudj
Abderrahmane Mejedoub Mokhtari
Karim Dehina
Abdelatif Zairi
Romain Mege
Mohammed-Hichem Benzaama
Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
Case Studies in Thermal Engineering
Solar thermal
Direct solar floor
Storage tank
Management strategy
Machine learning
Identification
title Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
title_full Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
title_fullStr Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
title_full_unstemmed Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
title_short Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating
title_sort experimental and machine learning based identification of a solar thermal system for domestic hot water and direct solar floor heating
topic Solar thermal
Direct solar floor
Storage tank
Management strategy
Machine learning
Identification
url http://www.sciencedirect.com/science/article/pii/S2214157X25001959
work_keys_str_mv AT yassinebouguergour experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT sayehmenhoudj experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT abderrahmanemejedoubmokhtari experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT karimdehina experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT abdelatifzairi experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT romainmege experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating
AT mohammedhichembenzaama experimentalandmachinelearningbasedidentificationofasolarthermalsystemfordomestichotwateranddirectsolarfloorheating