High-energy and fast-charging lithium metal batteries enabled by tuning Li+-solvation via electron-withdrawing and lithiophobicity functionality
Abstract The solvent fluorination almost always improves electrochemical stability of electrolytes against both lithium anodes and high-voltage cathodes in lithium metal batteries. However, how exactly fluorination affects Li+-solvation and interphasial chemistries remains unclear, hindering rationa...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59967-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The solvent fluorination almost always improves electrochemical stability of electrolytes against both lithium anodes and high-voltage cathodes in lithium metal batteries. However, how exactly fluorination affects Li+-solvation and interphasial chemistries remains unclear, hindering rational design of electrolytes and interphases with both wide electrochemical stability window and fast ion transport kinetics that are required for energy-dense and fast-charging LMBs. Here we introduce the trifluoromethylation (-CF3) at one end of 1,2-dimethoxyethane and generate 1,1,1-trifluoro-2-(2-methoxyethoxy) ethane, which as a single solvent of electrolyte simultaneously meets energy-dense and fast-charging requirements when dissolving 2 M lithium bis(fluorosulfonyl)imide. Beside the electron-withdrawing effect of -CF3, we find that its lithiophobic nature against Li+ significantly alters the solvation structures, which favors the formation of anion-dominated clusters that lead to superior interphasial chemistries in layered structure and fast Li+ transport kinetics. In such electrolyte, lithium metal batteries constructed with 50-μm-thin Li||high-loading-NMC811 in both coin and pouch cell configurations achieve >400 cycles under fast-charging condition, and >100 cycles in 14-Ah-level industrial pouch cell with a high energy density over 510 Wh kg−1 at cell-level. |
|---|---|
| ISSN: | 2041-1723 |