Systematic Review of Service Quality Models in Construction
The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/13/2331 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The construction industry is undergoing a significant transformation due to the increasing influence of digital technology, sustainability requirements, and diverse stakeholder expectations, which highlights the need to update the existing service quality models accordingly. However, the traditional service quality models often fail to address these evolving demands comprehensively. This study systematically reviews 44 peer-reviewed articles to identify the key service quality dimensions and offer clear guidance for future research that can address the complexities of modern construction. The findings reveal that reliability, tangibles, and communication remain the most emphasized dimensions across the reviewed literature, whereas critical areas, such as digital integration, sustainability indicators, and service recovery, are significantly underexplored. This contrast explicitly links the limitations of the classic frameworks to these emerging demands, highlighting their difficulty in accommodating the industry’s growing reliance on real-time data, an environmentally friendly performance, and multi-stakeholder collaboration. Because the construction industry typically contributes 6–10 per cent of the national GDP and underpins wider economic development, inadequate service quality models can propagate cost overruns, productivity losses, and reputational damage across the economy; conversely, improved models enhance project efficiency, and thus support sustained economic growth. This review is limited by its reliance on the Scopus and Web of Science databases, which may exclude relevant regional or non-English studies. Furthermore, many reviewed articles are context-specific, potentially reducing the generalizability of the findings. Despite these limitations, this review offers an evidence-based framework that integrates advanced digital tools, sustainability measures, and diverse stakeholder perspectives. Future studies should demonstrate this framework’s efficacy and applicability in different circumstances. |
|---|---|
| ISSN: | 2075-5309 |