Furin-Triggered Peptide Self-Assembly Activates Coumarin Excimer Fluorescence for Precision Live-Cell Imaging

Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly prov...

Full description

Saved in:
Bibliographic Details
Main Authors: Peiyao Chen, Liling Meng, Yuting Wang, Xiaoya Yan, Meiqin Li, Yun Deng, Yao Sun
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/11/2465
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this limitation. As a proof-of-concept, in this study, we developed a furin-triggered peptide self-assembling fluorescent probe RF-Cou by coupling a coumarin dye 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (Cou) with a furin-responsive peptide scaffold for precision live-cell imaging. Upon entering furin-overexpressing 4T1 tumor cells, RF-Cou underwent enzymatic cleavage, releasing an amphiphilic peptide motif and self-assembling into nanoparticles largely concentrated in the Golgi apparatus to confine the diffusion of Cou. During this process, the Cou excimers were formed and induced a red shift in the fluorescence emission, validating the feasibility of RF-Cou in efficient excimer imaging of furin-overexpressing tumor cells. We expect that our findings will highlight the potential of stimuli-responsive small molecular peptide probes to advance excimer-based imaging platforms, particularly for enzyme-specific cell imaging and therapeutic monitoring.
ISSN:1420-3049