AI-based quality assessment methods for protein structure models from cryo-EM

Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, with an increasing number of structures being determined by cryo-EM each year, many at higher resolutions. However, challenges remain in accurately interpreting cryo-EM maps. Inaccuracies can arise in regions of locally l...

Full description

Saved in:
Bibliographic Details
Main Authors: Han Zhu, Genki Terashi, Farhanaz Farheen, Tsukasa Nakamura, Daisuke Kihara
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Current Research in Structural Biology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2665928X25000017
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, with an increasing number of structures being determined by cryo-EM each year, many at higher resolutions. However, challenges remain in accurately interpreting cryo-EM maps. Inaccuracies can arise in regions of locally low resolution, where manual model building is more prone to errors. Validation scores for structure models have been developed to assess both the compatibility between map density and the structure, as well as the geometric and stereochemical properties of protein models. Recent advancements have introduced artificial intelligence (AI) into this field. These emerging AI-driven tools offer unique capabilities in the validation and refinement of cryo-EM-derived protein atomic models, potentially leading to more accurate protein structures and deeper insights into complex biological systems.
ISSN:2665-928X