A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning

Global navigation satellite systems are the best means of navigation for dynamic platforms. However, interference, line-of-sight blockages, and multipath are destructive to receiver operations. Advanced receiver architectures like vector tracking loops have been shown to be more resilient in trackin...

Full description

Saved in:
Bibliographic Details
Main Authors: Scott Burchfield, Charles Givhan, Scott Martin
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/6/1951
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global navigation satellite systems are the best means of navigation for dynamic platforms. However, interference, line-of-sight blockages, and multipath are destructive to receiver operations. Advanced receiver architectures like vector tracking loops have been shown to be more resilient in tracking during degraded signal environments and dynamic scenarios. Additionally, controlled reception pattern antennas can be used to steer the effective antenna gain pattern to resist interference. This work introduces algorithms for a software-defined radio that combines vector tracking loops with a phased antenna array to digitally steer beams for the amplification of signals of interest so that the effects of signal degradation and multipath can be reduced. The proposed receiver design was tested on dynamic live sky data in multipath-rich environments and compared against traditional scalar receivers with and without beamforming as well as robust commercial receivers. The results showed that beam steering receivers were obtaining the expected amplification and that the vector tracking with beam steering was able to provide better positioning and signal tracking performance than the other implemented software receivers and provide continuous measurements where the commercial receiver failed to track degraded signals.
ISSN:1424-8220