A High-throughput, Robotic System for Analysis of Aerosol Sampling Filters

Abstract The determination of accumulated mass on filter-based aerosol samples is the basis for many forms of scientific research and regulatory monitoring of air quality. However, gravimetric analysis of air sampling filters is tedious, time-intensive, and prone to human error. This work describes...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian L’Orange, Gabe Neymark, Ellison Carter, John Volckens
Format: Article
Language:English
Published: Springer 2021-08-01
Series:Aerosol and Air Quality Research
Subjects:
Online Access:https://doi.org/10.4209/aaqr.210037
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The determination of accumulated mass on filter-based aerosol samples is the basis for many forms of scientific research and regulatory monitoring of air quality. However, gravimetric analysis of air sampling filters is tedious, time-intensive, and prone to human error. This work describes the development of an Automated Air Analysis Facility (AIRLIFT) for high-throughput gravimetric mass and optical black carbon measurements of filter-based aerosol samples. The AIRLIFT consists of a sealed environmental enclosure, a 6-axis articulating robotic arm, a programmable control system, a filter weighing apparatus, and an optical system for the determination of aerosol black carbon via light attenuation. The system actively monitors microbalance stability and chamber relative humidity. Digital imaging and QR code scanning support sample tracking and data logging. Performance metrics for temperature and humidity control and weight stability were found to meet or exceed minimum requirements set forth by the US Environmental Protection Agency. The AIRLIFT is capable of analyzing approximately 260 filters per day while reducing the required personnel time by a factor of ~4.
ISSN:1680-8584
2071-1409