Temporally correlated quantum noise in driven quantum systems with applications to quantum gate operations

The ubiquitous effects of the environment on quantum-mechanical systems generally cause temporally correlated fluctuations. This particularly holds for systems of interest for quantum computation where such effects lead to correlated errors. The Markovian approximation neglects these correlations an...

Full description

Saved in:
Bibliographic Details
Main Authors: Balázs Gulácsi, Guido Burkard
Format: Article
Language:English
Published: American Physical Society 2025-04-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.023073
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ubiquitous effects of the environment on quantum-mechanical systems generally cause temporally correlated fluctuations. This particularly holds for systems of interest for quantum computation where such effects lead to correlated errors. The Markovian approximation neglects these correlations and thus fails to accurately describe open-system dynamics where these correlations become relevant. In driven open systems, yet another approximation is persistently used, often unknowingly, in which one describes the decay effects independently from the time-dependent controlling fields acting on the system, thereby ignoring further temporally correlated effects. To overcome these shortcomings, we develop a quantum master equation for driven systems weakly coupled to quantum environments that avoids the aforementioned field-independent approximation, as well as the Markovian approximation. Our method makes it possible to track all occurring decay channels and their time-dependent generalized rates which we illustrate in the example of a generally driven two-level system. We also demonstrate that correlated and field-dependent dissipative effects can lead to an increase in the performance of single-qubit gate operations.
ISSN:2643-1564