Maps Preserving Idempotence on Matrix Spaces

Suppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuqiu Sheng, Hanyu Zhang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2015/428203
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551338498588672
author Yuqiu Sheng
Hanyu Zhang
author_facet Yuqiu Sheng
Hanyu Zhang
author_sort Yuqiu Sheng
collection DOAJ
description Suppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),Tn(F)}; a map Φ:V→V is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,B∈V and λ∈F. In this paper, the maps preserving idempotence on Sn(F), Mn(F), and Tn(F) were characterized in case |F|=3.
format Article
id doaj-art-d3b0512262bb406b94d096a71db65341
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-d3b0512262bb406b94d096a71db653412025-02-03T06:01:44ZengWileyJournal of Mathematics2314-46292314-47852015-01-01201510.1155/2015/428203428203Maps Preserving Idempotence on Matrix SpacesYuqiu Sheng0Hanyu Zhang1School of Mathematical Science, Heilongjiang University, Harbin 150080, ChinaSchool of Mathematical Science, Heilongjiang University, Harbin 150080, ChinaSuppose F is an arbitrary field. Let |F| be the number of the elements of F. Let Mn(F) be the space of all n×n matrices over F, let Sn(F) be the subset of Mn(F) consisting of all symmetric matrices, and let Tn(F) be the subset of Mn(F) consisting of all upper-triangular matrices. Let V∈{Sn(F),Mn(F),Tn(F)}; a map Φ:V→V is said to preserve idempotence if A-λB is idempotent if and only if Φ(A)-λΦ(B) is idempotent for any A,B∈V and λ∈F. In this paper, the maps preserving idempotence on Sn(F), Mn(F), and Tn(F) were characterized in case |F|=3.http://dx.doi.org/10.1155/2015/428203
spellingShingle Yuqiu Sheng
Hanyu Zhang
Maps Preserving Idempotence on Matrix Spaces
Journal of Mathematics
title Maps Preserving Idempotence on Matrix Spaces
title_full Maps Preserving Idempotence on Matrix Spaces
title_fullStr Maps Preserving Idempotence on Matrix Spaces
title_full_unstemmed Maps Preserving Idempotence on Matrix Spaces
title_short Maps Preserving Idempotence on Matrix Spaces
title_sort maps preserving idempotence on matrix spaces
url http://dx.doi.org/10.1155/2015/428203
work_keys_str_mv AT yuqiusheng mapspreservingidempotenceonmatrixspaces
AT hanyuzhang mapspreservingidempotenceonmatrixspaces