Reliability Modeling and Evaluation of Electric Vehicle Motor by Using Fault Tree and Extended Stochastic Petri Nets

Performing reliability analysis of electric vehicle motor has an important impact on its safety. To do so, this paper proposes its reliability modeling and evaluation issues of electric vehicle motor by using fault tree (FT) and extended stochastic Petri nets (ESPN). Based on the concepts of FT and...

Full description

Saved in:
Bibliographic Details
Main Authors: Bing Wang, Guangdong Tian, Yanping Liang, Tiangang Qiang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/638013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Performing reliability analysis of electric vehicle motor has an important impact on its safety. To do so, this paper proposes its reliability modeling and evaluation issues of electric vehicle motor by using fault tree (FT) and extended stochastic Petri nets (ESPN). Based on the concepts of FT and ESPN, an FT based ESPN model for reliability analysis is obtained. In addition, the reliability calculation method is introduced and this work designs a hybrid intelligent algorithm integrating stochastic simulation and NN, namely, NN based simulation algorithm, to solve it. Finally, taking an electric vehicle motor as an example, its reliability modeling and evaluation issues are analyzed. The results illustrate the proposed models and the effectiveness of proposed algorithms. Moreover, the results reported in this work could be useful for the designers of electric vehicle motor, particularly, in the process of redesigning the electric vehicle motor and scheduling its reliability growth plan.
ISSN:1110-757X
1687-0042