Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/12/3221 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849432086860005376 |
|---|---|
| author | Laith Mustafa Rafał Ślefarski Radosław Jankowski Mohammad Alnajideen Sven Eckart |
| author_facet | Laith Mustafa Rafał Ślefarski Radosław Jankowski Mohammad Alnajideen Sven Eckart |
| author_sort | Laith Mustafa |
| collection | DOAJ |
| description | Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE LM6000 gas turbine fueled by methane/hydrogen and methane/ammonia fuel blends under varying levels of oxygen enrichment (21%, 30%, and 40% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>O</mi><mn>2</mn></msub></semantics></math></inline-formula> by volume). Steady-state thermodynamic simulations were conducted using Aspen HYSYS, and combustion modeling was performed using ANSYS Chemkin-Pro, assuming a constant thermal input of 102 MW. Results show that increasing hydrogen content significantly raises flame temperature and burning velocity, whereas ammonia reduces both due to its lower reactivity. Net power output and thermal efficiency improved with higher fuel substitution, peaking at 43.46 MW and 42.7% for 100% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi mathvariant="normal">x</mi></msub></mrow></semantics></math></inline-formula> emissions increased with higher hydrogen content and oxygen enrichment, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> blends exhibit more complex emission trends. The findings highlight the trade-offs between efficiency and emissions in future low-carbon gas turbine systems. |
| format | Article |
| id | doaj-art-d325d0cce97141f3a66612e2e0a8cf8f |
| institution | Kabale University |
| issn | 1996-1073 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Energies |
| spelling | doaj-art-d325d0cce97141f3a66612e2e0a8cf8f2025-08-20T03:27:26ZengMDPI AGEnergies1996-10732025-06-011812322110.3390/en18123221Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>Laith Mustafa0Rafał Ślefarski1Radosław Jankowski2Mohammad Alnajideen3Sven Eckart4Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66044, USAInstitute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, PolandInstitute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, PolandCollege of Physical Sciences and Engineering, Cardiff University, Cardiff CF24 3AA, UKInstitute of Thermal Engineering, TU Bergakademie Freiberg, 09599 Freiberg, GermanyGas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE LM6000 gas turbine fueled by methane/hydrogen and methane/ammonia fuel blends under varying levels of oxygen enrichment (21%, 30%, and 40% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>O</mi><mn>2</mn></msub></semantics></math></inline-formula> by volume). Steady-state thermodynamic simulations were conducted using Aspen HYSYS, and combustion modeling was performed using ANSYS Chemkin-Pro, assuming a constant thermal input of 102 MW. Results show that increasing hydrogen content significantly raises flame temperature and burning velocity, whereas ammonia reduces both due to its lower reactivity. Net power output and thermal efficiency improved with higher fuel substitution, peaking at 43.46 MW and 42.7% for 100% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi mathvariant="normal">x</mi></msub></mrow></semantics></math></inline-formula> emissions increased with higher hydrogen content and oxygen enrichment, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> blends exhibit more complex emission trends. The findings highlight the trade-offs between efficiency and emissions in future low-carbon gas turbine systems.https://www.mdpi.com/1996-1073/18/12/3221green hydrogenammoniagas turbine cyclealternative fueloxygen enriched combustion |
| spellingShingle | Laith Mustafa Rafał Ślefarski Radosław Jankowski Mohammad Alnajideen Sven Eckart Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> Energies green hydrogen ammonia gas turbine cycle alternative fuel oxygen enriched combustion |
| title | Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> |
| title_full | Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> |
| title_fullStr | Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> |
| title_full_unstemmed | Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> |
| title_short | Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub> |
| title_sort | modeling the thermodynamics of oxygen enriched combustion in a ge lm6000 gas turbine using i ch i sub 4 sub i nh i sub 3 sub and i ch i sub 4 sub i h i sub 2 sub |
| topic | green hydrogen ammonia gas turbine cycle alternative fuel oxygen enriched combustion |
| url | https://www.mdpi.com/1996-1073/18/12/3221 |
| work_keys_str_mv | AT laithmustafa modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub AT rafałslefarski modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub AT radosławjankowski modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub AT mohammadalnajideen modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub AT sveneckart modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub |