Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>

Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of...

Full description

Saved in:
Bibliographic Details
Main Authors: Laith Mustafa, Rafał Ślefarski, Radosław Jankowski, Mohammad Alnajideen, Sven Eckart
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/12/3221
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849432086860005376
author Laith Mustafa
Rafał Ślefarski
Radosław Jankowski
Mohammad Alnajideen
Sven Eckart
author_facet Laith Mustafa
Rafał Ślefarski
Radosław Jankowski
Mohammad Alnajideen
Sven Eckart
author_sort Laith Mustafa
collection DOAJ
description Gas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE LM6000 gas turbine fueled by methane/hydrogen and methane/ammonia fuel blends under varying levels of oxygen enrichment (21%, 30%, and 40% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>O</mi><mn>2</mn></msub></semantics></math></inline-formula> by volume). Steady-state thermodynamic simulations were conducted using Aspen HYSYS, and combustion modeling was performed using ANSYS Chemkin-Pro, assuming a constant thermal input of 102 MW. Results show that increasing hydrogen content significantly raises flame temperature and burning velocity, whereas ammonia reduces both due to its lower reactivity. Net power output and thermal efficiency improved with higher fuel substitution, peaking at 43.46 MW and 42.7% for 100% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi mathvariant="normal">x</mi></msub></mrow></semantics></math></inline-formula> emissions increased with higher hydrogen content and oxygen enrichment, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> blends exhibit more complex emission trends. The findings highlight the trade-offs between efficiency and emissions in future low-carbon gas turbine systems.
format Article
id doaj-art-d325d0cce97141f3a66612e2e0a8cf8f
institution Kabale University
issn 1996-1073
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-d325d0cce97141f3a66612e2e0a8cf8f2025-08-20T03:27:26ZengMDPI AGEnergies1996-10732025-06-011812322110.3390/en18123221Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>Laith Mustafa0Rafał Ślefarski1Radosław Jankowski2Mohammad Alnajideen3Sven Eckart4Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66044, USAInstitute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, PolandInstitute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, PolandCollege of Physical Sciences and Engineering, Cardiff University, Cardiff CF24 3AA, UKInstitute of Thermal Engineering, TU Bergakademie Freiberg, 09599 Freiberg, GermanyGas turbines are widely used in power generation due to their reliability, flexibility, and high efficiency. As the energy sector transitions towards low-carbon alternatives, hydrogen and ammonia are emerging as promising fuels. This study investigates the thermodynamic and combustion performance of a GE LM6000 gas turbine fueled by methane/hydrogen and methane/ammonia fuel blends under varying levels of oxygen enrichment (21%, 30%, and 40% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>O</mi><mn>2</mn></msub></semantics></math></inline-formula> by volume). Steady-state thermodynamic simulations were conducted using Aspen HYSYS, and combustion modeling was performed using ANSYS Chemkin-Pro, assuming a constant thermal input of 102 MW. Results show that increasing hydrogen content significantly raises flame temperature and burning velocity, whereas ammonia reduces both due to its lower reactivity. Net power output and thermal efficiency improved with higher fuel substitution, peaking at 43.46 MW and 42.7% for 100% <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. However, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi mathvariant="normal">x</mi></msub></mrow></semantics></math></inline-formula> emissions increased with higher hydrogen content and oxygen enrichment, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> blends exhibit more complex emission trends. The findings highlight the trade-offs between efficiency and emissions in future low-carbon gas turbine systems.https://www.mdpi.com/1996-1073/18/12/3221green hydrogenammoniagas turbine cyclealternative fueloxygen enriched combustion
spellingShingle Laith Mustafa
Rafał Ślefarski
Radosław Jankowski
Mohammad Alnajideen
Sven Eckart
Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
Energies
green hydrogen
ammonia
gas turbine cycle
alternative fuel
oxygen enriched combustion
title Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
title_full Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
title_fullStr Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
title_full_unstemmed Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
title_short Modeling the Thermodynamics of Oxygen-Enriched Combustion in a GE LM6000 Gas Turbine Using <i>CH</i><sub>4</sub>/<i>NH</i><sub>3</sub> and <i>CH</i><sub>4</sub>/<i>H</i><sub>2</sub>
title_sort modeling the thermodynamics of oxygen enriched combustion in a ge lm6000 gas turbine using i ch i sub 4 sub i nh i sub 3 sub and i ch i sub 4 sub i h i sub 2 sub
topic green hydrogen
ammonia
gas turbine cycle
alternative fuel
oxygen enriched combustion
url https://www.mdpi.com/1996-1073/18/12/3221
work_keys_str_mv AT laithmustafa modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub
AT rafałslefarski modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub
AT radosławjankowski modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub
AT mohammadalnajideen modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub
AT sveneckart modelingthethermodynamicsofoxygenenrichedcombustioninagelm6000gasturbineusingichisub4subinhisub3subandichisub4subihisub2sub