Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
We study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) th...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/636782 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554459312422912 |
---|---|
author | D. H. Jin J. W. Lee |
author_facet | D. H. Jin J. W. Lee |
author_sort | D. H. Jin |
collection | DOAJ |
description | We study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) the coscreen distribution 𝑆(𝑇𝑀⟂) of 𝑀 is a conformal Killing distribution. |
format | Article |
id | doaj-art-d31dfed6cfc440a08013d637835e0f42 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-d31dfed6cfc440a08013d637835e0f422025-02-03T05:51:27ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/636782636782Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant CurvatureD. H. Jin0J. W. Lee1Department of Mathematics, Dongguk University, Kyongju 780-714, Republic of KoreaDepartment of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of KoreaWe study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) the coscreen distribution 𝑆(𝑇𝑀⟂) of 𝑀 is a conformal Killing distribution.http://dx.doi.org/10.1155/2012/636782 |
spellingShingle | D. H. Jin J. W. Lee Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature Journal of Applied Mathematics |
title | Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature |
title_full | Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature |
title_fullStr | Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature |
title_full_unstemmed | Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature |
title_short | Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature |
title_sort | lightlike submanifolds of a semi riemannian manifold of quasi constant curvature |
url | http://dx.doi.org/10.1155/2012/636782 |
work_keys_str_mv | AT dhjin lightlikesubmanifoldsofasemiriemannianmanifoldofquasiconstantcurvature AT jwlee lightlikesubmanifoldsofasemiriemannianmanifoldofquasiconstantcurvature |