Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature

We study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) th...

Full description

Saved in:
Bibliographic Details
Main Authors: D. H. Jin, J. W. Lee
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/636782
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554459312422912
author D. H. Jin
J. W. Lee
author_facet D. H. Jin
J. W. Lee
author_sort D. H. Jin
collection DOAJ
description We study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) the coscreen distribution 𝑆(𝑇𝑀⟂) of 𝑀 is a conformal Killing distribution.
format Article
id doaj-art-d31dfed6cfc440a08013d637835e0f42
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-d31dfed6cfc440a08013d637835e0f422025-02-03T05:51:27ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/636782636782Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant CurvatureD. H. Jin0J. W. Lee1Department of Mathematics, Dongguk University, Kyongju 780-714, Republic of KoreaDepartment of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of KoreaWe study the geometry of lightlike submanifolds (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(𝑇𝑀⟂)) of a semi-Riemannian manifold (𝑀,̃𝑔) of quasiconstant curvature subject to the following conditions: (1) the curvature vector field ζ of 𝑀 is tangent to 𝑀, (2) the screen distribution 𝑆(𝑇𝑀) of 𝑀 is totally geodesic in 𝑀, and (3) the coscreen distribution 𝑆(𝑇𝑀⟂) of 𝑀 is a conformal Killing distribution.http://dx.doi.org/10.1155/2012/636782
spellingShingle D. H. Jin
J. W. Lee
Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
Journal of Applied Mathematics
title Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
title_full Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
title_fullStr Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
title_full_unstemmed Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
title_short Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature
title_sort lightlike submanifolds of a semi riemannian manifold of quasi constant curvature
url http://dx.doi.org/10.1155/2012/636782
work_keys_str_mv AT dhjin lightlikesubmanifoldsofasemiriemannianmanifoldofquasiconstantcurvature
AT jwlee lightlikesubmanifoldsofasemiriemannianmanifoldofquasiconstantcurvature