Surrogate Models and Related Combustion Reaction Mechanisms for a Coal-Derived Alternative Jet Fuel and Its Blends with a Traditional RP-3
Jet fuel from direct coal liquefaction (DCL) is an important alternative kerosene and represents a high-performance fuel for specific applications in civil applications. The study on its chemical positions and combustion properties is critical for the development of surrogate models and related comb...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Aerospace |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2226-4310/12/6/505 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Jet fuel from direct coal liquefaction (DCL) is an important alternative kerosene and represents a high-performance fuel for specific applications in civil applications. The study on its chemical positions and combustion properties is critical for the development of surrogate models and related combustion reaction mechanisms, which is valuable for promoting its usage in aeroengines. However, research on DCL-derived jet fuel is rather scarce. Herein, this work reports a systematic study on a DCL-derived jet fuel and its blends with traditional RP-3 jet fuel in two different ratios. Specifically, major physicochemical properties related to the aviation fuel airworthiness certification process are measured. Advanced two-dimensional gas chromatography (GC × GC) analysis is used to analyze the detailed chemical compositions on the DCL derived jet fuel and its blend with RP-3, which is then employed for surrogate model development. Moreover, ignition delay times (IDTs) are measured by using a heated shock-tube (ST) facility for the blended fuels over a wide range of conditions. Combustion reaction mechanisms based on the surrogate models are developed to predict the experimental measured IDTs. Finally, sensitivity analysis and rate-of-production analysis are carried out to identify the key chemical kinetics controlling the ignition characteristics. This work extends the understanding of the physicochemical properties and ignition characteristics of alternative jet fuels and should be valuable for the practical usage of DCL derived jet fuels. |
|---|---|
| ISSN: | 2226-4310 |