A Regularized Gradient Projection Method for the Minimization Problem

We investigate the following regularized gradient projection algorithm xn+1=Pc(I−γn(∇f+αnI))xn, n≥0. Under some different control conditions, we prove that this gradient projection algorithm strongly converges to the minimum norm solution of the minimization problem minx∈Cf(x).

Saved in:
Bibliographic Details
Main Authors: Yonghong Yao, Shin Min Kang, Wu Jigang, Pei-Xia Yang
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/259813
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832547534339309568
author Yonghong Yao
Shin Min Kang
Wu Jigang
Pei-Xia Yang
author_facet Yonghong Yao
Shin Min Kang
Wu Jigang
Pei-Xia Yang
author_sort Yonghong Yao
collection DOAJ
description We investigate the following regularized gradient projection algorithm xn+1=Pc(I−γn(∇f+αnI))xn, n≥0. Under some different control conditions, we prove that this gradient projection algorithm strongly converges to the minimum norm solution of the minimization problem minx∈Cf(x).
format Article
id doaj-art-d30f7f929d074a6cbbede5ec3cd6dc2f
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-d30f7f929d074a6cbbede5ec3cd6dc2f2025-02-03T06:44:28ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/259813259813A Regularized Gradient Projection Method for the Minimization ProblemYonghong Yao0Shin Min Kang1Wu Jigang2Pei-Xia Yang3Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, ChinaDepartment of Mathematics and the RINS, Gyeongsang National University, Jinju 660-701, Republic of KoreaSchool of Computer Science and Software, Tianjin Polytechnic University, Tianjin 300387, ChinaDepartment of Mathematics, Tianjin Polytechnic University, Tianjin 300387, ChinaWe investigate the following regularized gradient projection algorithm xn+1=Pc(I−γn(∇f+αnI))xn, n≥0. Under some different control conditions, we prove that this gradient projection algorithm strongly converges to the minimum norm solution of the minimization problem minx∈Cf(x).http://dx.doi.org/10.1155/2012/259813
spellingShingle Yonghong Yao
Shin Min Kang
Wu Jigang
Pei-Xia Yang
A Regularized Gradient Projection Method for the Minimization Problem
Journal of Applied Mathematics
title A Regularized Gradient Projection Method for the Minimization Problem
title_full A Regularized Gradient Projection Method for the Minimization Problem
title_fullStr A Regularized Gradient Projection Method for the Minimization Problem
title_full_unstemmed A Regularized Gradient Projection Method for the Minimization Problem
title_short A Regularized Gradient Projection Method for the Minimization Problem
title_sort regularized gradient projection method for the minimization problem
url http://dx.doi.org/10.1155/2012/259813
work_keys_str_mv AT yonghongyao aregularizedgradientprojectionmethodfortheminimizationproblem
AT shinminkang aregularizedgradientprojectionmethodfortheminimizationproblem
AT wujigang aregularizedgradientprojectionmethodfortheminimizationproblem
AT peixiayang aregularizedgradientprojectionmethodfortheminimizationproblem
AT yonghongyao regularizedgradientprojectionmethodfortheminimizationproblem
AT shinminkang regularizedgradientprojectionmethodfortheminimizationproblem
AT wujigang regularizedgradientprojectionmethodfortheminimizationproblem
AT peixiayang regularizedgradientprojectionmethodfortheminimizationproblem