Switching MIMO System with Adaptive OFDM Modulation for Indoor Visible Light Communication

In this paper, we propose and experimentally demonstrate a switching multiple input and multiple output (MIMO) system combining with adaptive orthogonal frequency division multiplexing (OFDM) modulation for high-speed indoor visible light communications. The adaptive OFDM modulation, which is realiz...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinyue Guo, Keer Zhang, Xufa Huang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2018/5694196
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose and experimentally demonstrate a switching multiple input and multiple output (MIMO) system combining with adaptive orthogonal frequency division multiplexing (OFDM) modulation for high-speed indoor visible light communications. The adaptive OFDM modulation, which is realized by power and bit allocation on OFDM subchannels, is utilized to achieve the maximum channel capacity under a given target bit error rate (BER). Meanwhile, the MIMO mode switches between spatial multiplexing and transmit diversity adapting to the channel correlation, where the modulation order solved by adaptive OFDM modulation is chosen as the switching criterion. Experimental results validate data rates improvement over the pure spatial multiplexing and the pure transmit diversity system, where BERs are all below the 7% preforward error correction (pre-FEC) threshold of 3.8 × 10−3 in experiments.
ISSN:1687-8108
1687-8124