Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway
Human amnion-derived mesenchymal stem cells (HAMSCs) are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from h...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Stem Cells International |
| Online Access: | http://dx.doi.org/10.1155/2016/4851081 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849473566975721472 |
|---|---|
| author | Yuli Wang Fei Jiang Yi Liang Ming Shen Ning Chen |
| author_facet | Yuli Wang Fei Jiang Yi Liang Ming Shen Ning Chen |
| author_sort | Yuli Wang |
| collection | DOAJ |
| description | Human amnion-derived mesenchymal stem cells (HAMSCs) are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs) in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP) activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency. |
| format | Article |
| id | doaj-art-d2cb1329ef564d079160c2cd1d30ac7d |
| institution | Kabale University |
| issn | 1687-966X 1687-9678 |
| language | English |
| publishDate | 2016-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Stem Cells International |
| spelling | doaj-art-d2cb1329ef564d079160c2cd1d30ac7d2025-08-20T03:24:06ZengWileyStem Cells International1687-966X1687-96782016-01-01201610.1155/2016/48510814851081Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling PathwayYuli Wang0Fei Jiang1Yi Liang2Ming Shen3Ning Chen4Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, Jiangsu 210029, ChinaJiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, Jiangsu 210029, ChinaJiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, Jiangsu 210029, ChinaJiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, Jiangsu 210029, ChinaJiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, Jiangsu 210029, ChinaHuman amnion-derived mesenchymal stem cells (HAMSCs) are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs) in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP) activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency.http://dx.doi.org/10.1155/2016/4851081 |
| spellingShingle | Yuli Wang Fei Jiang Yi Liang Ming Shen Ning Chen Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway Stem Cells International |
| title | Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway |
| title_full | Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway |
| title_fullStr | Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway |
| title_full_unstemmed | Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway |
| title_short | Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway |
| title_sort | human amnion derived mesenchymal stem cells promote osteogenic differentiation in human bone marrow mesenchymal stem cells by influencing the erk1 2 signaling pathway |
| url | http://dx.doi.org/10.1155/2016/4851081 |
| work_keys_str_mv | AT yuliwang humanamnionderivedmesenchymalstemcellspromoteosteogenicdifferentiationinhumanbonemarrowmesenchymalstemcellsbyinfluencingtheerk12signalingpathway AT feijiang humanamnionderivedmesenchymalstemcellspromoteosteogenicdifferentiationinhumanbonemarrowmesenchymalstemcellsbyinfluencingtheerk12signalingpathway AT yiliang humanamnionderivedmesenchymalstemcellspromoteosteogenicdifferentiationinhumanbonemarrowmesenchymalstemcellsbyinfluencingtheerk12signalingpathway AT mingshen humanamnionderivedmesenchymalstemcellspromoteosteogenicdifferentiationinhumanbonemarrowmesenchymalstemcellsbyinfluencingtheerk12signalingpathway AT ningchen humanamnionderivedmesenchymalstemcellspromoteosteogenicdifferentiationinhumanbonemarrowmesenchymalstemcellsbyinfluencingtheerk12signalingpathway |