An Odd Rearrangement of L1(Rn)

We introduce an odd rearrangement f* defined by π(f)(x)=f*(x)=sgn(x1)f*(νn|x|n), x∈Rn, where f* is a decreasing rearrangement of the measurable function f. With the help of this odd rearrangement, we show that for each f∈L1(Rn), there exists a g∈H1(Rn) such that df=dg, where df is an distribution fu...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheng Wang, Jiecheng Chen
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/787840
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564712615706624
author Zheng Wang
Jiecheng Chen
author_facet Zheng Wang
Jiecheng Chen
author_sort Zheng Wang
collection DOAJ
description We introduce an odd rearrangement f* defined by π(f)(x)=f*(x)=sgn(x1)f*(νn|x|n), x∈Rn, where f* is a decreasing rearrangement of the measurable function f. With the help of this odd rearrangement, we show that for each f∈L1(Rn), there exists a g∈H1(Rn) such that df=dg, where df is an distribution function of f. Moreover, we study the boundedness of singular integral operators when they are restricted to odd rearrangement of L1(Rn), and we give some results on Hilbert transform.
format Article
id doaj-art-d28a7ed733e545fe97eeb98fbe52fd3c
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-d28a7ed733e545fe97eeb98fbe52fd3c2025-02-03T01:10:26ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/787840787840An Odd Rearrangement of L1(Rn)Zheng Wang0Jiecheng Chen1Department of Mathematics, Zhejiang University, Hangzhou 310027, ChinaDepartment of Mathematics, Zhejiang Normal University, Jinhua 321004, ChinaWe introduce an odd rearrangement f* defined by π(f)(x)=f*(x)=sgn(x1)f*(νn|x|n), x∈Rn, where f* is a decreasing rearrangement of the measurable function f. With the help of this odd rearrangement, we show that for each f∈L1(Rn), there exists a g∈H1(Rn) such that df=dg, where df is an distribution function of f. Moreover, we study the boundedness of singular integral operators when they are restricted to odd rearrangement of L1(Rn), and we give some results on Hilbert transform.http://dx.doi.org/10.1155/2014/787840
spellingShingle Zheng Wang
Jiecheng Chen
An Odd Rearrangement of L1(Rn)
Journal of Function Spaces
title An Odd Rearrangement of L1(Rn)
title_full An Odd Rearrangement of L1(Rn)
title_fullStr An Odd Rearrangement of L1(Rn)
title_full_unstemmed An Odd Rearrangement of L1(Rn)
title_short An Odd Rearrangement of L1(Rn)
title_sort odd rearrangement of l1 rn
url http://dx.doi.org/10.1155/2014/787840
work_keys_str_mv AT zhengwang anoddrearrangementofl1rn
AT jiechengchen anoddrearrangementofl1rn
AT zhengwang oddrearrangementofl1rn
AT jiechengchen oddrearrangementofl1rn