Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XR...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Nanomaterials |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/15/9/664 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. Also, the electrocatalysts were studied by electrochemical techniques such as anodic CO stripping and β-NiOOH reduction to elucidate the Pd and Ni surface sites participation in the reactions. The electrocatalysts were evaluated in the anodic reaction in anion-exchange membrane fuel cells (AEMFC) and the hydrogen oxidation reaction (HOR) in alkaline media. The results indicate that PdNi/C electrocatalysts exhibited higher electrocatalytic activity than Pd/C electrocatalysts in both the half-cell test and in the AEMFC, even with the same Pd loading, which is attributed to the bifunctional mechanism that provides OH<sup>-</sup> groups in oxophilic sites associated to Ni, that can facilitate the desorption of Hads in the Pd sites for the bimetallic material. |
|---|---|
| ISSN: | 2079-4991 |