Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids

It is well established that root exudates play a crucial role in shaping the assembly of plant rhizosphere microbial communities. Nonetheless, our understanding of how different types of exudates influence the abundance of potential pathogens in soil remains insufficient. Investigating the effects o...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaoguan Zhao, Yan Sun, Lanxi Su, Lin Yan, Xingjun Lin, Yuzhou Long, Ang Zhang, Qingyun Zhao
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Journal of Fungi
Subjects:
Online Access:https://www.mdpi.com/2309-608X/11/2/154
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well established that root exudates play a crucial role in shaping the assembly of plant rhizosphere microbial communities. Nonetheless, our understanding of how different types of exudates influence the abundance of potential pathogens in soil remains insufficient. Investigating the effects of root exudates on soil-dwelling pathogenic fungi is imperative for a comprehensive understanding of plant–fungal interactions within soil ecosystems and for maintaining soil health. This study aimed to elucidate the effects of the principal components of root exudates—flavonoids (FLA), phenolic acids (PA), and organic acids (OA)—on soil microbial communities and soil properties, as well as to investigate their mechanisms of action on soil potential pathogenic fungi. The results demonstrated that the addition of these components significantly modified the composition and diversity of soil microbial communities, with OA treatment notably altering the composition of dominant microbial taxa. Furthermore, the introduction of these substances facilitated the proliferation of saprophytic fungi. Additionally, the incorporation of flavonoids, phenolic acids, and organic acids led to an increased abundance of potential pathogenic fungi in the soil, particularly in the FLA and PA treatments. It was observed that the addition of these substances enhanced soil fertility, pH, and antioxidant enzyme activity. Specifically, FLA and PA treatments reduced the abundance of dominant microbial taxa, whereas OA treatment altered the composition of these taxa. These findings suggest that the inclusion of flavonoids, phenolic acids, and organic acids could potentially augment the enrichment of soil potential pathogenic fungi by modulating soil properties and enzymatic activities. These results offer valuable insights into the interactions between plants and fungal communities in soil ecosystems and provide a scientific foundation for the management and maintenance of soil health.
ISSN:2309-608X