Self-Sustaining Double-Stage Circularity Through Utilization of Sunflower Agriculture’s Waste in Bio-Fertilizers: Commissioning of a Full-Scale Facility
The conception of a circular economy is one of the crucial approaches that could accelerate the processes of achieving sustainable development goals, which challenge all industries and societies. Still, the potential of agricultural waste in this area is not fully covered by technologies. This study...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/4/2203 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The conception of a circular economy is one of the crucial approaches that could accelerate the processes of achieving sustainable development goals, which challenge all industries and societies. Still, the potential of agricultural waste in this area is not fully covered by technologies. This study aims to develop a full-scale technology for self-sustaining double-stage circularity through the utilization of sunflower agriculture’s waste in bio-fertilizers. The investigation is performed in Bulgaria, as available sunflower husk ashes (SHA) are subjected to analyses regarding their applicability for bio-fertilizer production. The design of the technology and full-scale equipment commissioning process are described. The conditions and results from the adjustment tests are presented and, based on these, the optimal operating parameters are defined. The successful granulation of different samples of SHA at these conditions is performed and the final granular bio-fertilizers are characterized with a content of 30 wt. % K<sub>2</sub>O and 5% wt. P<sub>2</sub>O. The moisture of the prepared granules is approx. 5 wt. %, and they pass the crushing tests at 2.5 kgf. The biotoxicity of the bio-fertilizer is also analyzed, and the results show its applicability in agriculture. The proposed approach allows the initial sources of K<sub>2</sub>O and P<sub>2</sub>O from soil feeding the sunflowers to circulate in different industrial technologies and to reenter the soil through bio-fertilizers. |
|---|---|
| ISSN: | 2076-3417 |