Simulation Study on Detection and Localization of a Moving Target Under Reverberation in Deep Water

Deep-water reverberation caused by multiple reflections from the seafloor and sea surface can affect the performance of active sonars. To detect a moving target under reverberation conditions, a reverberation suppression method using multipath Doppler shift in deep water and wideband ambiguity funct...

Full description

Saved in:
Bibliographic Details
Main Authors: Jincong Dun, Shihong Zhou, Yubo Qi, Changpeng Liu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/12/12/2360
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep-water reverberation caused by multiple reflections from the seafloor and sea surface can affect the performance of active sonars. To detect a moving target under reverberation conditions, a reverberation suppression method using multipath Doppler shift in deep water and wideband ambiguity function (WAF) is proposed. Firstly, the multipath Doppler factors in the deep-water direct zone are analyzed, and they are introduced into the target scattered sound field to obtain the echo of the moving target. The mesh method is used to simulate the deep-water reverberation waveform in time domain. Then, a simulation model for an active sonar based on the source and short vertical line array is established. Reverberation and target echo in the received signal can be separated in the Doppler shift domain of the WAF. The multipath Doppler shifts in the echo are used to estimate the multipath arrival angles, which can be used for target localization. The simulation model and the reverberation suppression detection method can provide theoretical support and a technical reference for the active detection of moving targets in deep water.
ISSN:2077-1312