On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space

Let $K\times _M V$ be the homogenous vector bundle over $K/M=Sp(n)\times Sp(1)/Sp(n-1)\times Sp(1)$ associated to an irreducible representation $(\delta _{\nu }, V)$ of Sp(1). We give an image characterization of the Poisson transform $\mathcal{P}_{\lambda ,\nu }$ of $L^{2}$-section of $K\times _M V...

Full description

Saved in:
Bibliographic Details
Main Author: Ouald Chaib, Achraf
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.550/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206267430305792
author Ouald Chaib, Achraf
author_facet Ouald Chaib, Achraf
author_sort Ouald Chaib, Achraf
collection DOAJ
description Let $K\times _M V$ be the homogenous vector bundle over $K/M=Sp(n)\times Sp(1)/Sp(n-1)\times Sp(1)$ associated to an irreducible representation $(\delta _{\nu }, V)$ of Sp(1). We give an image characterization of the Poisson transform $\mathcal{P}_{\lambda ,\nu }$ of $L^{2}$-section of $K\times _M V$. We also show that $\mathcal{P}_{\lambda ,\nu }f$, $f$ $\in L^{p}(K\times _M V) $ satisfies a Hardy-type estimate.
format Article
id doaj-art-d217a0d68b604ddbab56eabd634b7d9d
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-d217a0d68b604ddbab56eabd634b7d9d2025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G326527310.5802/crmath.55010.5802/crmath.550On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic spaceOuald Chaib, Achraf0Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kénitra, MoroccoLet $K\times _M V$ be the homogenous vector bundle over $K/M=Sp(n)\times Sp(1)/Sp(n-1)\times Sp(1)$ associated to an irreducible representation $(\delta _{\nu }, V)$ of Sp(1). We give an image characterization of the Poisson transform $\mathcal{P}_{\lambda ,\nu }$ of $L^{2}$-section of $K\times _M V$. We also show that $\mathcal{P}_{\lambda ,\nu }f$, $f$ $\in L^{p}(K\times _M V) $ satisfies a Hardy-type estimate.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.550/
spellingShingle Ouald Chaib, Achraf
On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
Comptes Rendus. Mathématique
title On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
title_full On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
title_fullStr On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
title_full_unstemmed On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
title_short On the Poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
title_sort on the poisson transform on a homogenous vector bundle over the quaternionic hyperbolic space
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.550/
work_keys_str_mv AT oualdchaibachraf onthepoissontransformonahomogenousvectorbundleoverthequaternionichyperbolicspace