Hybrid microspheres and percolated monoliths synthesized via Pickering emulsion co-polymerization stabilized by in situ surface-modified silica nanoparticles
The Pickering emulsion polymerization of styrene (St), divinylbenzene (DVB) as a crosslinking agent, and sodium 4-vinyl benzene sulfonate (VBS) used for in situ surface-modification of silica nanoparticles (SNps) was investigated. At 1.0 wt% DVB, amphiphilic SNps with hydrophobic patches were formed...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Budapest University of Technology and Economics
2021-06-01
|
| Series: | eXPRESS Polymer Letters |
| Subjects: | |
| Online Access: | http://www.expresspolymlett.com/letolt.php?file=EPL-0011026&mi=cd |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Pickering emulsion polymerization of styrene (St), divinylbenzene (DVB) as a crosslinking agent, and sodium 4-vinyl benzene sulfonate (VBS) used for in situ surface-modification of silica nanoparticles (SNps) was investigated. At 1.0 wt% DVB, amphiphilic SNps with hydrophobic patches were formed, further self-assembling into copolymer-SNps clusters occurred. Subsequently, these clusters grow by monomer swelling to finally lead to the formation of core-shell polymer microspheres. Unlike the hydrophilic patchy SNps, at 2.0 and 3.0 wt% DVB, surface-patterned SNps with higher effective hydrophobicity do not self-assemble in the water phase but rather lead to the formation of monoliths. The polymerization mechanisms related to the formation of polymer silica-coated microspheres hybrid-materials, or percolated monoliths with bi-continuous porosity, formed by interfacially jammed emulsion gel (bijels) templates, are discussed herein. |
|---|---|
| ISSN: | 1788-618X |