Extended Calibration Technique of a Four-Hole Probe for Three-Dimensional Flow Measurements

The present paper reports the development and nonnulling calibration technique to calibrate a cantilever type cylindrical four-hole probe of 2.54 mm diameter to measure three-dimensional flows. The probe is calibrated at a probe Reynolds number of 9525. The probe operative angular range is extended...

Full description

Saved in:
Bibliographic Details
Main Authors: Suresh Munivenkatareddy, Nekkanti Sitaram
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2016/5327297
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper reports the development and nonnulling calibration technique to calibrate a cantilever type cylindrical four-hole probe of 2.54 mm diameter to measure three-dimensional flows. The probe is calibrated at a probe Reynolds number of 9525. The probe operative angular range is extended using a zonal method by dividing into three zones, namely, center, left, and right zone. Different calibration coefficients are defined for each zone. The attainable angular range achieved using the zonal method is ±60 degrees in the yaw plane and −50 to +30 degrees in the pitch plane. Sensitivity analysis of all the four calibration coefficients shows that probe pitch sensitivity is lower than the yaw sensitivity in the center zone, and extended left and right zones have lower sensitivity than the center zone. In addition, errors due to the data reduction program for the probe are presented. The errors are found to be reasonably small in all the three zones. However, the errors in the extended left and right zones have slightly larger magnitudes compared to those in the center zone.
ISSN:1023-621X
1542-3034