Inosine-5′-monophosphate interacts with the TAS1R3 subunit to enhance sweet taste detection

Umami and sweet taste detection is mediated by the activation of the TAS1R1/TAS1R3 and TAS1R2/TAS1R3 receptors, respectively. TAS1R2-Venus flytrap domain (VFT) constitutes the primary ligand-binding site for most of the sweeteners whereas TAS1R1-VFT contains the orthosteric binding site for umami co...

Full description

Saved in:
Bibliographic Details
Main Authors: Christine Belloir, Lucie Moitrier, Adeline Karolkowski, Nicolas Poirier, Fabrice Neiers, Loïc Briand
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Food Chemistry: Molecular Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666566225000073
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Umami and sweet taste detection is mediated by the activation of the TAS1R1/TAS1R3 and TAS1R2/TAS1R3 receptors, respectively. TAS1R2-Venus flytrap domain (VFT) constitutes the primary ligand-binding site for most of the sweeteners whereas TAS1R1-VFT contains the orthosteric binding site for umami compounds. Inosine-5′-monophosphate (IMP), previously known to potentiate umami taste, binds to a site of TAS1R1-VFT adjacent to the L-glutamate site leading to umami synergy. However, the involvement of the TAS1R3 subunit in umami receptor-ligand interactions or in synergy with IMP has never been demonstrated. To elucidate the VFT contribution to umami and sweet detection, we expressed human TAS1R1- and TAS1R3-VFTs in bacteria. Ligand binding studies quantified by intrinsic tryptophan fluorescence revealed that both TAS1R1- and TAS1R3-VFTs are able to interact with umami compounds. Cellular assays revealed that IMP is able, like cyclamate, to modulate the response of TAS1R2/TAS1R3 and TAS1R3 alone stimulated by calcium ions. IMP also acted as an enhancer of TAS1R2/TAS1R3 when stimulated with sucralose, neotame and cyclamate. Taking together, our data demonstrated that IMP modulates sweet compound detection at the receptor level acting via the TAS1R3 subunit. This research suggests more complex receptor interactions between umami and sweet taste qualities and paves the way for development of new sweetness enhancers.
ISSN:2666-5662