Tetrahedrite Nanocomposites for High Performance Thermoelectrics

Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodrigo Coelho, Duarte Moço, Ana I. de Sá, Paulo P. da Luz, Filipe Neves, Maria de Fátima Cerqueira, Elsa B. Lopes, Francisco P. Brito, Panagiotis Mangelis, Theodora Kyratsi, António P. Gonçalves
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/5/351
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850052819192643584
author Rodrigo Coelho
Duarte Moço
Ana I. de Sá
Paulo P. da Luz
Filipe Neves
Maria de Fátima Cerqueira
Elsa B. Lopes
Francisco P. Brito
Panagiotis Mangelis
Theodora Kyratsi
António P. Gonçalves
author_facet Rodrigo Coelho
Duarte Moço
Ana I. de Sá
Paulo P. da Luz
Filipe Neves
Maria de Fátima Cerqueira
Elsa B. Lopes
Francisco P. Brito
Panagiotis Mangelis
Theodora Kyratsi
António P. Gonçalves
author_sort Rodrigo Coelho
collection DOAJ
description Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed. Tetrahedrites were first prepared by solid state reaction, followed by the addition of MoS<sub>2</sub> nanoparticles (NPs) and hot-pressing at 848 K with 56 MPa for a duration of 90 min to obtain nanocomposites. The materials were characterized by XRD, SEM-EDS, and Raman spectroscopy to evaluate the composites’ matrix and NP distribution. To complement the results, lattice thermal conductivity and the weighted mobility were evaluated. The NPs’ addition to the tetrahedrites resulted in an increase of 36% of the maximum figure of merit (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mi>T</mi></mrow></semantics></math></inline-formula>) comparatively with the base material. This increase is explained by the reduction of the material’s lattice thermal conductivity while maintaining its mobility. Such results highlight the potential of nanocomposites to contribute to the development of a new generation of TE devices based on more affordable and efficient materials.
format Article
id doaj-art-d1ea4ec7739941568820f4f4660ed8da
institution DOAJ
issn 2079-4991
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj-art-d1ea4ec7739941568820f4f4660ed8da2025-08-20T02:52:42ZengMDPI AGNanomaterials2079-49912025-02-0115535110.3390/nano15050351Tetrahedrite Nanocomposites for High Performance ThermoelectricsRodrigo Coelho0Duarte Moço1Ana I. de Sá2Paulo P. da Luz3Filipe Neves4Maria de Fátima Cerqueira5Elsa B. Lopes6Francisco P. Brito7Panagiotis Mangelis8Theodora Kyratsi9António P. Gonçalves10Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, PortugalCentro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, PortugalLaboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, PortugalLaboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, PortugalLaboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, PortugalInternational Iberian Nanotechnology Laboratory, 4715-330 Braga, PortugalCentro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, PortugalMechanical Engineering and Resource Sustainability Center (MEtRICs), Departamento de Engenharia Mecânica (DEM), Universidade do Minho, 4800-058 Guimarães, PortugalDepartment of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, CyprusDepartment of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, CyprusCentro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, PortugalThermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed. Tetrahedrites were first prepared by solid state reaction, followed by the addition of MoS<sub>2</sub> nanoparticles (NPs) and hot-pressing at 848 K with 56 MPa for a duration of 90 min to obtain nanocomposites. The materials were characterized by XRD, SEM-EDS, and Raman spectroscopy to evaluate the composites’ matrix and NP distribution. To complement the results, lattice thermal conductivity and the weighted mobility were evaluated. The NPs’ addition to the tetrahedrites resulted in an increase of 36% of the maximum figure of merit (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mi>T</mi></mrow></semantics></math></inline-formula>) comparatively with the base material. This increase is explained by the reduction of the material’s lattice thermal conductivity while maintaining its mobility. Such results highlight the potential of nanocomposites to contribute to the development of a new generation of TE devices based on more affordable and efficient materials.https://www.mdpi.com/2079-4991/15/5/351tetrahedrite nanocompositesMoS<sub>2</sub> nanoparticleshot-pressinglattice thermal conductivitytransport propertiesweighted mobility
spellingShingle Rodrigo Coelho
Duarte Moço
Ana I. de Sá
Paulo P. da Luz
Filipe Neves
Maria de Fátima Cerqueira
Elsa B. Lopes
Francisco P. Brito
Panagiotis Mangelis
Theodora Kyratsi
António P. Gonçalves
Tetrahedrite Nanocomposites for High Performance Thermoelectrics
Nanomaterials
tetrahedrite nanocomposites
MoS<sub>2</sub> nanoparticles
hot-pressing
lattice thermal conductivity
transport properties
weighted mobility
title Tetrahedrite Nanocomposites for High Performance Thermoelectrics
title_full Tetrahedrite Nanocomposites for High Performance Thermoelectrics
title_fullStr Tetrahedrite Nanocomposites for High Performance Thermoelectrics
title_full_unstemmed Tetrahedrite Nanocomposites for High Performance Thermoelectrics
title_short Tetrahedrite Nanocomposites for High Performance Thermoelectrics
title_sort tetrahedrite nanocomposites for high performance thermoelectrics
topic tetrahedrite nanocomposites
MoS<sub>2</sub> nanoparticles
hot-pressing
lattice thermal conductivity
transport properties
weighted mobility
url https://www.mdpi.com/2079-4991/15/5/351
work_keys_str_mv AT rodrigocoelho tetrahedritenanocompositesforhighperformancethermoelectrics
AT duartemoco tetrahedritenanocompositesforhighperformancethermoelectrics
AT anaidesa tetrahedritenanocompositesforhighperformancethermoelectrics
AT paulopdaluz tetrahedritenanocompositesforhighperformancethermoelectrics
AT filipeneves tetrahedritenanocompositesforhighperformancethermoelectrics
AT mariadefatimacerqueira tetrahedritenanocompositesforhighperformancethermoelectrics
AT elsablopes tetrahedritenanocompositesforhighperformancethermoelectrics
AT franciscopbrito tetrahedritenanocompositesforhighperformancethermoelectrics
AT panagiotismangelis tetrahedritenanocompositesforhighperformancethermoelectrics
AT theodorakyratsi tetrahedritenanocompositesforhighperformancethermoelectrics
AT antoniopgoncalves tetrahedritenanocompositesforhighperformancethermoelectrics