Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context

Summary: Background: Artificial Intelligence (AI) models hold promise as useful tools in healthcare practice. We aimed to develop and assess AI models for automatic classification of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) clinical images through a Deep L...

Full description

Saved in:
Bibliographic Details
Main Authors: Cristina Saldivia-Siracusa, Eduardo Santos Carlos de Souza, Arnaldo Vitor Barros da Silva, Anna Luíza Damaceno Araújo, Caíque Mariano Pedroso, Tarcília Aparecida da Silva, Maria Sissa Pereira Sant'Ana, Felipe Paiva Fonseca, Hélder Antônio Rebelo Pontes, Marcos G. Quiles, Marcio Ajudarte Lopes, Pablo Agustin Vargas, Syed Ali Khurram, Alexander T. Pearson, Mark W. Lingen, Luiz Paulo Kowalski, Keith D. Hunter, André Carlos Ponce de Leon Ferreira de Carvalho, Alan Roger Santos-Silva
Format: Article
Language:English
Published: Elsevier 2025-07-01
Series:The Lancet Regional Health. Americas
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667193X25001486
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850183058486984704
author Cristina Saldivia-Siracusa
Eduardo Santos Carlos de Souza
Arnaldo Vitor Barros da Silva
Anna Luíza Damaceno Araújo
Caíque Mariano Pedroso
Tarcília Aparecida da Silva
Maria Sissa Pereira Sant'Ana
Felipe Paiva Fonseca
Hélder Antônio Rebelo Pontes
Marcos G. Quiles
Marcio Ajudarte Lopes
Pablo Agustin Vargas
Syed Ali Khurram
Alexander T. Pearson
Mark W. Lingen
Luiz Paulo Kowalski
Keith D. Hunter
André Carlos Ponce de Leon Ferreira de Carvalho
Alan Roger Santos-Silva
author_facet Cristina Saldivia-Siracusa
Eduardo Santos Carlos de Souza
Arnaldo Vitor Barros da Silva
Anna Luíza Damaceno Araújo
Caíque Mariano Pedroso
Tarcília Aparecida da Silva
Maria Sissa Pereira Sant'Ana
Felipe Paiva Fonseca
Hélder Antônio Rebelo Pontes
Marcos G. Quiles
Marcio Ajudarte Lopes
Pablo Agustin Vargas
Syed Ali Khurram
Alexander T. Pearson
Mark W. Lingen
Luiz Paulo Kowalski
Keith D. Hunter
André Carlos Ponce de Leon Ferreira de Carvalho
Alan Roger Santos-Silva
author_sort Cristina Saldivia-Siracusa
collection DOAJ
description Summary: Background: Artificial Intelligence (AI) models hold promise as useful tools in healthcare practice. We aimed to develop and assess AI models for automatic classification of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) clinical images through a Deep Learning (DL) approach, and to explore explainability using Gradient-weighted Class Activation Mapping (Grad-CAM). Methods: This study assessed a dataset of 778 clinical images of OPMD and OSCC, divided into training, model optimization, and internal testing subsets with an 8:1:1 proportion. Transfer learning strategies were applied to pre-train 8 convolutional neural networks (CNN). Performance was evaluated by mean accuracy, precision, recall, specificity, F1-score and area under the receiver operating characteristic (AUROC) values. Grad-CAM qualitative appraisal was performed to assess explainability. Findings: ConvNeXt and MobileNet CNNs showed the best performance. Transfer learning strategies enhanced performance for both algorithms, and the greatest model achieved mean accuracy, precision, recall, F1-score and AUROC of 0.799, 0.837, 0.756, 0.794 and 0.863 during internal testing, respectively. MobileNet displayed the lowest computational cost. Grad-CAM analysis demonstrated discrepancies between the best-performing model and the highest explainability model. Interpretation: ConvNeXt and MobileNet DL models accurately distinguished OSCC from OPMD in clinical photographs taken with different types of image-capture devices. Grad-CAM proved to be an outstanding tool to improve performance interpretation. Obtained results suggest that the adoption of DL models in healthcare could aid in diagnostic assistance and decision-making during clinical practice. Funding: This work was supported by FAPESP (2022/13069-8, 2022/07276-0, 2021/14585-7 and 2024/20694-1), CAPES, CNPq (307604/2023-3) and FAPEMIG.
format Article
id doaj-art-d1e7e281e4ee489f82489f8f4f19de97
institution OA Journals
issn 2667-193X
language English
publishDate 2025-07-01
publisher Elsevier
record_format Article
series The Lancet Regional Health. Americas
spelling doaj-art-d1e7e281e4ee489f82489f8f4f19de972025-08-20T02:17:28ZengElsevierThe Lancet Regional Health. Americas2667-193X2025-07-014710113810.1016/j.lana.2025.101138Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in contextCristina Saldivia-Siracusa0Eduardo Santos Carlos de Souza1Arnaldo Vitor Barros da Silva2Anna Luíza Damaceno Araújo3Caíque Mariano Pedroso4Tarcília Aparecida da Silva5Maria Sissa Pereira Sant'Ana6Felipe Paiva Fonseca7Hélder Antônio Rebelo Pontes8Marcos G. Quiles9Marcio Ajudarte Lopes10Pablo Agustin Vargas11Syed Ali Khurram12Alexander T. Pearson13Mark W. Lingen14Luiz Paulo Kowalski15Keith D. Hunter16André Carlos Ponce de Leon Ferreira de Carvalho17Alan Roger Santos-Silva18Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, São Paulo, BrazilInstitute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, São Paulo, BrazilInstitute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, BrazilHead and Neck Surgery Department, University of São Paulo Medical School, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, BrazilDepartamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, São Paulo, BrazilDepartment of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, BrazilDepartment of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, BrazilDepartment of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, BrazilService of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, BrazilInstitute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, BrazilDepartamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, São Paulo, BrazilDepartamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, São Paulo, BrazilUnit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UKSection of Haematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL, USADepartment of Pathology, The University of Chicago Medicine, Chicago, IL, USAHead and Neck Surgery Department, University of São Paulo Medical School, São Paulo, Brazil; Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, State of São Paulo, BrazilLiverpool Head and Neck Center, ISMIB, University of Liverpool, Liverpool, UKInstitute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, São Paulo, BrazilDepartamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil; Corresponding author. Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Av. Limeira, no 901, Areão, Piracicaba, São Paulo, 13414-903, Brazil.Summary: Background: Artificial Intelligence (AI) models hold promise as useful tools in healthcare practice. We aimed to develop and assess AI models for automatic classification of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) clinical images through a Deep Learning (DL) approach, and to explore explainability using Gradient-weighted Class Activation Mapping (Grad-CAM). Methods: This study assessed a dataset of 778 clinical images of OPMD and OSCC, divided into training, model optimization, and internal testing subsets with an 8:1:1 proportion. Transfer learning strategies were applied to pre-train 8 convolutional neural networks (CNN). Performance was evaluated by mean accuracy, precision, recall, specificity, F1-score and area under the receiver operating characteristic (AUROC) values. Grad-CAM qualitative appraisal was performed to assess explainability. Findings: ConvNeXt and MobileNet CNNs showed the best performance. Transfer learning strategies enhanced performance for both algorithms, and the greatest model achieved mean accuracy, precision, recall, F1-score and AUROC of 0.799, 0.837, 0.756, 0.794 and 0.863 during internal testing, respectively. MobileNet displayed the lowest computational cost. Grad-CAM analysis demonstrated discrepancies between the best-performing model and the highest explainability model. Interpretation: ConvNeXt and MobileNet DL models accurately distinguished OSCC from OPMD in clinical photographs taken with different types of image-capture devices. Grad-CAM proved to be an outstanding tool to improve performance interpretation. Obtained results suggest that the adoption of DL models in healthcare could aid in diagnostic assistance and decision-making during clinical practice. Funding: This work was supported by FAPESP (2022/13069-8, 2022/07276-0, 2021/14585-7 and 2024/20694-1), CAPES, CNPq (307604/2023-3) and FAPEMIG.http://www.sciencedirect.com/science/article/pii/S2667193X25001486Artificial intelligenceDeep learningArtificial neural networkOral cancerHead and neck cancerPrecancerous conditions
spellingShingle Cristina Saldivia-Siracusa
Eduardo Santos Carlos de Souza
Arnaldo Vitor Barros da Silva
Anna Luíza Damaceno Araújo
Caíque Mariano Pedroso
Tarcília Aparecida da Silva
Maria Sissa Pereira Sant'Ana
Felipe Paiva Fonseca
Hélder Antônio Rebelo Pontes
Marcos G. Quiles
Marcio Ajudarte Lopes
Pablo Agustin Vargas
Syed Ali Khurram
Alexander T. Pearson
Mark W. Lingen
Luiz Paulo Kowalski
Keith D. Hunter
André Carlos Ponce de Leon Ferreira de Carvalho
Alan Roger Santos-Silva
Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
The Lancet Regional Health. Americas
Artificial intelligence
Deep learning
Artificial neural network
Oral cancer
Head and neck cancer
Precancerous conditions
title Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
title_full Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
title_fullStr Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
title_full_unstemmed Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
title_short Automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework: a cross-sectional studyResearch in context
title_sort automated classification of oral potentially malignant disorders and oral squamous cell carcinoma using a convolutional neural network framework a cross sectional studyresearch in context
topic Artificial intelligence
Deep learning
Artificial neural network
Oral cancer
Head and neck cancer
Precancerous conditions
url http://www.sciencedirect.com/science/article/pii/S2667193X25001486
work_keys_str_mv AT cristinasaldiviasiracusa automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT eduardosantoscarlosdesouza automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT arnaldovitorbarrosdasilva automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT annaluizadamacenoaraujo automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT caiquemarianopedroso automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT tarciliaaparecidadasilva automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT mariasissapereirasantana automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT felipepaivafonseca automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT helderantoniorebelopontes automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT marcosgquiles automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT marcioajudartelopes automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT pabloagustinvargas automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT syedalikhurram automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT alexandertpearson automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT markwlingen automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT luizpaulokowalski automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT keithdhunter automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT andrecarlosponcedeleonferreiradecarvalho automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext
AT alanrogersantossilva automatedclassificationoforalpotentiallymalignantdisordersandoralsquamouscellcarcinomausingaconvolutionalneuralnetworkframeworkacrosssectionalstudyresearchincontext