High-Precision Optimization of BIM-3D GIS Models for Digital Twins: A Case Study of Santun River Basin
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step fr...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/15/4630 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework that uses Industry Foundation Classes (IFCs) as the base model and Open Scene Graph Binary (OSGB) as the target model: (1) geometric optimization through an angular weighting (AW)-controlled Quadric Error Metrics (QEM) algorithm; (2) Level of Detail (LOD) hierarchical mapping to establish associations between the IFC and OSGB models, and redesign scene paging logic; (3) coordinate registration by converting the IFC model’s local coordinate system to the global coordinate system and achieving spatial alignment via the seven-parameter method. Applied to the Santun River Basin digital twin project, experiments with 10 water gate models show that the AW-QEM algorithm reduces average loading time by 15% compared to traditional QEM, while maintaining 97% geometric accuracy, demonstrating the method’s efficiency in balancing precision and rendering performance. |
|---|---|
| ISSN: | 1424-8220 |