Roles of dynein and dynactin in early endosome dynamics revealed using automated tracking and global analysis.
Microtubule-dependent movement is crucial for the spatial organization of endosomes in most eukaryotes, but as yet there has been no systematic analysis of how a particular microtubule motor contributes to early endosome dynamics. Here we tracked early endosomes labeled with GFP-Rab5 on the nanomete...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2011-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0024479&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Microtubule-dependent movement is crucial for the spatial organization of endosomes in most eukaryotes, but as yet there has been no systematic analysis of how a particular microtubule motor contributes to early endosome dynamics. Here we tracked early endosomes labeled with GFP-Rab5 on the nanometer scale, and combined this with global, first passage probability (FPP) analysis to provide an unbiased description of how the minus-end microtubule motor, cytoplasmic dynein, supports endosome motility. Dynein contributes to short-range endosome movement, but in particular drives 85-98% of long, inward translocations. For these, it requires an intact dynactin complex to allow membrane-bound p150(Glued) to activate dynein, since p50 over-expression, which disrupts the dynactin complex, inhibits inward movement even though dynein and p150(Glued) remain membrane-bound. Long dynein-dependent movements occur via bursts at up to ∼8 µms(-1) that are linked by changes in rate or pauses. These peak speeds during rapid inward endosome movement are still seen when cellular dynein levels are 50-fold reduced by RNAi knock-down of dynein heavy chain, while the number of movements is reduced 5-fold. Altogether, these findings identify how dynein helps define the dynamics of early endosomes. |
|---|---|
| ISSN: | 1932-6203 |