Solving Hyperchaotic Systems Using the Spectral Relaxation Method
A new multistage numerical method based on blending a Gauss-Siedel relaxation method and Chebyshev pseudospectral method, for solving complex dynamical systems exhibiting hyperchaotic behavior, is presented. The proposed method, called the multistage spectral relaxation method (MSRM), is applied for...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/203461 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new multistage numerical method based on blending a Gauss-Siedel relaxation method and Chebyshev pseudospectral method, for solving complex dynamical systems exhibiting hyperchaotic behavior, is presented. The proposed method, called the multistage spectral relaxation method (MSRM), is applied for the numerical solution of three hyperchaotic systems, namely, the Chua, Chen, and Rabinovich-Fabrikant systems. To demonstrate the performance of the method, results are presented in tables and diagrams and compared to results obtained using a Runge-Kutta-(4,5)-based MATLAB solver, ode45, and other previously published results. |
---|---|
ISSN: | 1085-3375 1687-0409 |