Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance

This paper proposes a profile empirical likelihood for the partial parameters in ARMA(p,q) models with infinite variance. We introduce a smoothed empirical log-likelihood ratio statistic. Also, the paper proves a nonparametric version of Wilks’s theorem. Furthermore, we conduct a simulation to illus...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinyu Li, Wei Liang, Shuyuan He
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/868970
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550937402540032
author Jinyu Li
Wei Liang
Shuyuan He
author_facet Jinyu Li
Wei Liang
Shuyuan He
author_sort Jinyu Li
collection DOAJ
description This paper proposes a profile empirical likelihood for the partial parameters in ARMA(p,q) models with infinite variance. We introduce a smoothed empirical log-likelihood ratio statistic. Also, the paper proves a nonparametric version of Wilks’s theorem. Furthermore, we conduct a simulation to illustrate the performance of the proposed method.
format Article
id doaj-art-d142ec8177fe4f40bf2455af4cb104eb
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-d142ec8177fe4f40bf2455af4cb104eb2025-02-03T06:05:23ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/868970868970Empirical Likelihood for Partial Parameters in ARMA Models with Infinite VarianceJinyu Li0Wei Liang1Shuyuan He2School of Sciences, China University of Mining and Technology, Xuzhou 221116, ChinaSchool of Mathematical Sciences, Xiamen University, Xiamen 361005, ChinaSchool of Mathematical Sciences, Capital Normal University, Beijing 100048, ChinaThis paper proposes a profile empirical likelihood for the partial parameters in ARMA(p,q) models with infinite variance. We introduce a smoothed empirical log-likelihood ratio statistic. Also, the paper proves a nonparametric version of Wilks’s theorem. Furthermore, we conduct a simulation to illustrate the performance of the proposed method.http://dx.doi.org/10.1155/2014/868970
spellingShingle Jinyu Li
Wei Liang
Shuyuan He
Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
Journal of Applied Mathematics
title Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
title_full Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
title_fullStr Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
title_full_unstemmed Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
title_short Empirical Likelihood for Partial Parameters in ARMA Models with Infinite Variance
title_sort empirical likelihood for partial parameters in arma models with infinite variance
url http://dx.doi.org/10.1155/2014/868970
work_keys_str_mv AT jinyuli empiricallikelihoodforpartialparametersinarmamodelswithinfinitevariance
AT weiliang empiricallikelihoodforpartialparametersinarmamodelswithinfinitevariance
AT shuyuanhe empiricallikelihoodforpartialparametersinarmamodelswithinfinitevariance