Biogas Energy Usage Through the Co-Digestion of the Organic Fraction of Urban Solid Waste with Lime Mud: An Environmental Impact Analysis

This study evaluates the energy recovery from biogas generated through the anaerobic co-digestion of the Organic Fraction of Urban Solid Waste (OFUSW) with lime mud (LM). This approach aims to mitigate environmental impacts such as greenhouse gas emissions and pollution while promoting energy recove...

Full description

Saved in:
Bibliographic Details
Main Authors: Ulisses Raad da Silva Coelho, Adriele Maria de Cássia Crispim, Maria Auxiliadora de Barros Martins, Regina Mambeli Barros, Maria Luiza Grillo Reno, Geraldo Lucio Tiago Filho, Ivan Felipe Silva dos Santos, Aylla Joani Mendonça de Oliveira Pontes
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Methane
Subjects:
Online Access:https://www.mdpi.com/2674-0389/4/1/7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the energy recovery from biogas generated through the anaerobic co-digestion of the Organic Fraction of Urban Solid Waste (OFUSW) with lime mud (LM). This approach aims to mitigate environmental impacts such as greenhouse gas emissions and pollution while promoting energy recovery for a diversified power matrix. Life cycle assessment (LCA) methodology, in accordance with the NBR ISO 14040 and 14044 standards, was used to compare five scenarios for the disposal of LM. The results highlight that the co-digestion scenario showed significant environmental benefits in 8 out of the 18 categories evaluated, such as reductions in eutrophication, acidification, and climate change. Additionally, the digestate produced helped avoid further environmental impacts. The integration of urban and industrial waste demonstrates the potential to enhance biogas productivity, generate savings for the pulp and paper industry, and promote sustainable practices. The innovation lies in the synergistic use of LM as a co-substrate, improving the efficiency of the anaerobic process and maximizing biogas production. This research provides a solid scientific foundation for decision-making in public policies and industrial practices, positioning itself as a viable and innovative proposal for the integrated management of solid waste and sustainable energy.
ISSN:2674-0389