Algorithmic aspects of bipartite graphs

We generalize previous work done by Donald J. Rose and Robert E. Tarjan [2], who developed efficient algorithms for use on directed graphs. This paper considers an edge elimination process on bipartite graphs, presenting several theorems which lead to an algorithm for computing the minimal fill-in o...

Full description

Saved in:
Bibliographic Details
Main Authors: Mihály Bakonyi, Erik M. Varness
Format: Article
Language:English
Published: Wiley 1995-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171295000378
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568247463968768
author Mihály Bakonyi
Erik M. Varness
author_facet Mihály Bakonyi
Erik M. Varness
author_sort Mihály Bakonyi
collection DOAJ
description We generalize previous work done by Donald J. Rose and Robert E. Tarjan [2], who developed efficient algorithms for use on directed graphs. This paper considers an edge elimination process on bipartite graphs, presenting several theorems which lead to an algorithm for computing the minimal fill-in of a given ordered graph.
format Article
id doaj-art-d0f1a5d7de2f4c9da697204092bd37ba
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1995-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-d0f1a5d7de2f4c9da697204092bd37ba2025-02-03T00:59:28ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251995-01-0118229930410.1155/S0161171295000378Algorithmic aspects of bipartite graphsMihály Bakonyi0Erik M. Varness1Department of Mathematics, Georgia State University, Atlanta, GA 30303, USADepartment of Mathematics, Valparaiso University, Valparaiso, Indiana 46383, USAWe generalize previous work done by Donald J. Rose and Robert E. Tarjan [2], who developed efficient algorithms for use on directed graphs. This paper considers an edge elimination process on bipartite graphs, presenting several theorems which lead to an algorithm for computing the minimal fill-in of a given ordered graph.http://dx.doi.org/10.1155/S0161171295000378Gaussian eliminationbipartite graphperfect edge elimination fill-in.
spellingShingle Mihály Bakonyi
Erik M. Varness
Algorithmic aspects of bipartite graphs
International Journal of Mathematics and Mathematical Sciences
Gaussian elimination
bipartite graph
perfect edge elimination
fill-in.
title Algorithmic aspects of bipartite graphs
title_full Algorithmic aspects of bipartite graphs
title_fullStr Algorithmic aspects of bipartite graphs
title_full_unstemmed Algorithmic aspects of bipartite graphs
title_short Algorithmic aspects of bipartite graphs
title_sort algorithmic aspects of bipartite graphs
topic Gaussian elimination
bipartite graph
perfect edge elimination
fill-in.
url http://dx.doi.org/10.1155/S0161171295000378
work_keys_str_mv AT mihalybakonyi algorithmicaspectsofbipartitegraphs
AT erikmvarness algorithmicaspectsofbipartitegraphs