Robust Adaptive Control via Neural Linearization and Compensation
We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure the stability of neural identification. Then fo...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Journal of Control Science and Engineering |
| Online Access: | http://dx.doi.org/10.1155/2012/867178 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a new type of neural adaptive control via dynamic neural networks. For a class of unknown nonlinear systems, a neural identifier-based feedback linearization controller is first used. Dead-zone and projection techniques are applied to assure the stability of neural identification. Then four types of compensator are addressed. The stability of closed-loop system is also proven. |
|---|---|
| ISSN: | 1687-5249 1687-5257 |