A new proof of the GGR conjecture

For each positive integer $n$, function $f$, and point $x$, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the $n$th Peano derivative $f_{(n)}(x)$ is equivalent to the existence of all $n(n+1)/2$ generalized Riemann derivatives, \[ D_{k,-j}f(x)=\lim _{h\rightarrow...

Full description

Saved in:
Bibliographic Details
Main Authors: Ash, J. Marshall, Catoiu, Stefan, Fejzić, Hajrudin
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.413/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206333012443136
author Ash, J. Marshall
Catoiu, Stefan
Fejzić, Hajrudin
author_facet Ash, J. Marshall
Catoiu, Stefan
Fejzić, Hajrudin
author_sort Ash, J. Marshall
collection DOAJ
description For each positive integer $n$, function $f$, and point $x$, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the $n$th Peano derivative $f_{(n)}(x)$ is equivalent to the existence of all $n(n+1)/2$ generalized Riemann derivatives, \[ D_{k,-j}f(x)=\lim _{h\rightarrow 0}\frac{1}{h^{n}}\sum _{i=0}^k(-1)^i\binom{k}{i}f(x+(k-i-j)h), \] for $j,k$ with $0\le j
format Article
id doaj-art-d0ac453474dc40cebc5e4c3e83bf2a11
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-d0ac453474dc40cebc5e4c3e83bf2a112025-02-07T11:06:07ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G134935310.5802/crmath.41310.5802/crmath.413A new proof of the GGR conjectureAsh, J. Marshall0Catoiu, Stefan1Fejzić, Hajrudin2Department of Mathematics, DePaul University, Chicago, IL 60614Department of Mathematics, DePaul University, Chicago, IL 60614Department of Mathematics, California State University, San Bernardino, CA 92407For each positive integer $n$, function $f$, and point $x$, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the $n$th Peano derivative $f_{(n)}(x)$ is equivalent to the existence of all $n(n+1)/2$ generalized Riemann derivatives, \[ D_{k,-j}f(x)=\lim _{h\rightarrow 0}\frac{1}{h^{n}}\sum _{i=0}^k(-1)^i\binom{k}{i}f(x+(k-i-j)h), \] for $j,k$ with $0\le jhttps://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.413/
spellingShingle Ash, J. Marshall
Catoiu, Stefan
Fejzić, Hajrudin
A new proof of the GGR conjecture
Comptes Rendus. Mathématique
title A new proof of the GGR conjecture
title_full A new proof of the GGR conjecture
title_fullStr A new proof of the GGR conjecture
title_full_unstemmed A new proof of the GGR conjecture
title_short A new proof of the GGR conjecture
title_sort new proof of the ggr conjecture
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.413/
work_keys_str_mv AT ashjmarshall anewproofoftheggrconjecture
AT catoiustefan anewproofoftheggrconjecture
AT fejzichajrudin anewproofoftheggrconjecture
AT ashjmarshall newproofoftheggrconjecture
AT catoiustefan newproofoftheggrconjecture
AT fejzichajrudin newproofoftheggrconjecture