A new proof of the GGR conjecture

For each positive integer $n$, function $f$, and point $x$, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the $n$th Peano derivative $f_{(n)}(x)$ is equivalent to the existence of all $n(n+1)/2$ generalized Riemann derivatives, \[ D_{k,-j}f(x)=\lim _{h\rightarrow...

Full description

Saved in:
Bibliographic Details
Main Authors: Ash, J. Marshall, Catoiu, Stefan, Fejzić, Hajrudin
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.413/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For each positive integer $n$, function $f$, and point $x$, the 1998 conjecture by Ginchev, Guerragio, and Rocca states that the existence of the $n$th Peano derivative $f_{(n)}(x)$ is equivalent to the existence of all $n(n+1)/2$ generalized Riemann derivatives, \[ D_{k,-j}f(x)=\lim _{h\rightarrow 0}\frac{1}{h^{n}}\sum _{i=0}^k(-1)^i\binom{k}{i}f(x+(k-i-j)h), \] for $j,k$ with $0\le j
ISSN:1778-3569