Leveraging weak complementary labels enhances semantic segmentation of hepatocellular carcinoma and intrahepatic cholangiocarcinoma

Abstract In this paper we present a deep learning segmentation approach to classify and quantify the two most prevalent primary liver cancers – hepatocellular carcinoma and intrahepatic cholangiocarcinoma – from hematoxylin and eosin (H&E) stained whole slide images. While semantic segmentation...

Full description

Saved in:
Bibliographic Details
Main Authors: Miriam Hägele, Johannes Eschrich, Lukas Ruff, Maximilian Alber, Simon Schallenberg, Adrien Guillot, Christoph Roderburg, Frank Tacke, Frederick Klauschen
Format: Article
Language:English
Published: Nature Portfolio 2024-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-75256-w
Tags: Add Tag
No Tags, Be the first to tag this record!