Biomechanical Usability Evaluation of a Novel Detachable Push–Pull Device for Rehabilitation in Manual Wheelchair Users
Manual wheelchair users are at high risk of upper limb overuse injuries due to repetitive propulsion mechanics. To address this, we developed a novel detachable push–pull dual-propulsion device that enables both forward and backward propulsion, aiming to reduce shoulder strain and promote balanced m...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Life |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1729/15/7/1037 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Manual wheelchair users are at high risk of upper limb overuse injuries due to repetitive propulsion mechanics. To address this, we developed a novel detachable push–pull dual-propulsion device that enables both forward and backward propulsion, aiming to reduce shoulder strain and promote balanced muscle engagement. This study presents a protocol to evaluate the device’s biomechanical impact and ergonomic effects, focusing on objective, quantitative analysis using a repeated-measures within-subject design. Thirty participants with spinal cord injury will perform standardized propulsion trials under two conditions: push and pull. Motion capture and surface electromyography (EMG) will assess upper limb kinematics and muscle activation. Each propulsion mode will be repeated over a 10-m track, and maximum voluntary contraction (MVC) data will be collected for EMG normalization. The protocol aims to provide objective evidence on the propulsion efficiency, muscle distribution, and ergonomic safety of the device. Findings will inform future assistive technology development and rehabilitation guidelines for manual wheelchair users. |
|---|---|
| ISSN: | 2075-1729 |