Predicting the Hydration of Ground Granulated Blast Furnace Slag and Recycled Glass Blended Cements

The use of recycled glass powder (RCGP) is investigated as a partial replacement for ground granulated blast furnace slag in blended CEM II/A-LL cements using thermodynamic modelling to simulate cement paste hydration at a water-to-cement (w/c) ratio of 0.5. This study allows a rapid means of examin...

Full description

Saved in:
Bibliographic Details
Main Authors: Mark Tyrer, Mark Richardson, Niall Holmes, John Newell, Marcus Yio, Hong Wong
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6872
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of recycled glass powder (RCGP) is investigated as a partial replacement for ground granulated blast furnace slag in blended CEM II/A-LL cements using thermodynamic modelling to simulate cement paste hydration at a water-to-cement (w/c) ratio of 0.5. This study allows a rapid means of examining the likely evolution of these materials over the first two to three years, allowing experimental work to focus on promising formulations. A comparison is made between the evolving solid phase and solution chemistries of four materials: a standard Portland-limestone (CEM II/A-LL), a ‘<i>control</i>’ blend, comprising equal quantities of CEM II/A-LL with GGBS and two novel blended cements containing RCGP. These represent 15% replacement (by mass) of GGBS by RCGP blended with either 40% or 60% CEM II/A-LL. The simulations were performed using the code HYDCEM, a cement hydration simulator, which calls on the thermodynamic model PHREEQC to sequentially simulate the evolution of the four cements. The results suggest that partial replacement of GGBS by 15% RCGP results in no significant change in system chemistry. The partial replacement of cementitious slag by waste container glass provides a route by which this material can be diverted from the landfill inventory, and the mass-balance and energy balance implications will be reported elsewhere.
ISSN:2076-3417