A tactile discrimination task to study neuronal dynamics in freely-moving mice
Abstract Sensory discrimination tasks are valuable tools to study neuronal mechanisms of perception and learning, yet most rodent paradigms rely on head fixation. Here, we present a whisker-dependent go/no-go discrimination task for freely moving mice, compatible with high-resolution electrophysiolo...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61792-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Sensory discrimination tasks are valuable tools to study neuronal mechanisms of perception and learning, yet most rodent paradigms rely on head fixation. Here, we present a whisker-dependent go/no-go discrimination task for freely moving mice, compatible with high-resolution electrophysiology and calcium imaging. Adult male mice rapidly learned to discriminate aperture widths while foraging on a linear platform, enabling investigations of tactile thresholds, rule reversals, and behavioral flexibility. Neural recordings revealed distributed tactile coding across the thalamocortical system, with units tuned to both sensory and motor features, including whisking, head angle, and spatial position. Aperture selectivity emerged in the barrel cortex during learning, and cortical lesions impaired performance, highlighting cortical involvement in learning and task execution. The setup is modular, automated, and supports simultaneous recordings and imaging aligned to naturalistic behavior. This platform provides a powerful tool to dissect sensory processing and learning in ethologically relevant conditions. |
|---|---|
| ISSN: | 2041-1723 |