Asymptotic Behavior of Multigroup SEIR Model with Nonlinear Incidence Rates under Stochastic Perturbations

In this paper, the asymptotic behavior of a multigroup SEIR model with stochastic perturbations and nonlinear incidence rate functions is studied. First, the existence and uniqueness of the solution to the model we discuss are given. Then, the global asymptotical stability in probability of the mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng Wang, Shan Wang, Youhua Peng
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/9367879
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the asymptotic behavior of a multigroup SEIR model with stochastic perturbations and nonlinear incidence rate functions is studied. First, the existence and uniqueness of the solution to the model we discuss are given. Then, the global asymptotical stability in probability of the model with R0<1 is established by constructing Lyapunov functions. Next, we prove that the disease can die out exponentially under certain stochastic perturbation while it is persistent in the deterministic case when R0>1. Finally, several examples and numerical simulations are provided to illustrate the dynamic behavior of the model and verify our analytical results.
ISSN:1026-0226
1607-887X