A quantitative spatial cell-cell colocalizations framework enabling comparisons between in vitro assembloids and pathological specimens
Abstract Spatial omics is enabling unprecedented tissue characterization, but the ability to adequately compare spatial features across samples under different conditions is lacking. We propose a quantitative framework that catalogs significant, normalized, colocalizations between pairs of cell subp...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55129-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Spatial omics is enabling unprecedented tissue characterization, but the ability to adequately compare spatial features across samples under different conditions is lacking. We propose a quantitative framework that catalogs significant, normalized, colocalizations between pairs of cell subpopulations, enabling comparisons among a variety of biological samples. We perform cell-pair colocalization analysis on multiplexed immunofluorescence images of assembloids constructed with lung adenocarcinoma (LUAD) organoids and cancer-associated fibroblasts derived from human tumors. Our data show that assembloids recapitulate human LUAD tumor-stroma spatial organization, justifying their use as a tool for investigating the spatial biology of human disease. Intriguingly, drug-perturbation studies identify drug-induced spatial rearrangements that also appear in treatment-naïve human tumor samples, suggesting potential directions for characterizing spatial (re)-organization related to drug resistance. Moreover, our work provides an opportunity to quantify spatial data across different samples, with the common goal of building catalogs of spatial features associated with disease processes and drug response. |
---|---|
ISSN: | 2041-1723 |