RSCS6D: Keypoint Extraction-Based 6D Pose Estimation
In this work, we propose an improved network, RSCS6D, for 6D pose estimation from RGB-D images by extracting keypoint-based point clouds. Our key insight is that keypoint cloud can reduce data redundancy in 3D point clouds and accelerate the convergence of convolutional neural networks. First, we em...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/12/6729 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850157002072784896 |
|---|---|
| author | Weiyu Liu Nan Di |
| author_facet | Weiyu Liu Nan Di |
| author_sort | Weiyu Liu |
| collection | DOAJ |
| description | In this work, we propose an improved network, RSCS6D, for 6D pose estimation from RGB-D images by extracting keypoint-based point clouds. Our key insight is that keypoint cloud can reduce data redundancy in 3D point clouds and accelerate the convergence of convolutional neural networks. First, we employ a semantic segmentation network on the RGB image to obtain mask images containing positional information and per-pixel labels. Next, we introduce a novel keypoint cloud extraction algorithm that combines RGB and depth images to detect 2D keypoints and convert them into 3D keypoints. Specifically, we convert the RGB image to grayscale and use the Sobel edge detection operator to identify 2D edge keypoints. Additionally, we compute the Curvature matrix from the depth image and apply the Sobel operator to extract keypoints critical for 6D pose estimation. Finally, the extracted 3D keypoint cloud is fed into the 6D pose estimation network to predict both translation and rotation. |
| format | Article |
| id | doaj-art-cfdfae5f58464eafb6b4b4e23c07e4ac |
| institution | OA Journals |
| issn | 2076-3417 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Applied Sciences |
| spelling | doaj-art-cfdfae5f58464eafb6b4b4e23c07e4ac2025-08-20T02:24:18ZengMDPI AGApplied Sciences2076-34172025-06-011512672910.3390/app15126729RSCS6D: Keypoint Extraction-Based 6D Pose EstimationWeiyu Liu0Nan Di1Academy for Advanced Interdisciplinary Studies, Northeast Normal University, No. 5268 Renmin Avenue, Changchun 130024, ChinaAcademy for Advanced Interdisciplinary Studies, Northeast Normal University, No. 5268 Renmin Avenue, Changchun 130024, ChinaIn this work, we propose an improved network, RSCS6D, for 6D pose estimation from RGB-D images by extracting keypoint-based point clouds. Our key insight is that keypoint cloud can reduce data redundancy in 3D point clouds and accelerate the convergence of convolutional neural networks. First, we employ a semantic segmentation network on the RGB image to obtain mask images containing positional information and per-pixel labels. Next, we introduce a novel keypoint cloud extraction algorithm that combines RGB and depth images to detect 2D keypoints and convert them into 3D keypoints. Specifically, we convert the RGB image to grayscale and use the Sobel edge detection operator to identify 2D edge keypoints. Additionally, we compute the Curvature matrix from the depth image and apply the Sobel operator to extract keypoints critical for 6D pose estimation. Finally, the extracted 3D keypoint cloud is fed into the 6D pose estimation network to predict both translation and rotation.https://www.mdpi.com/2076-3417/15/12/67296D pose estimationkeypoint extractionconvolutional neural networkSobel operator |
| spellingShingle | Weiyu Liu Nan Di RSCS6D: Keypoint Extraction-Based 6D Pose Estimation Applied Sciences 6D pose estimation keypoint extraction convolutional neural network Sobel operator |
| title | RSCS6D: Keypoint Extraction-Based 6D Pose Estimation |
| title_full | RSCS6D: Keypoint Extraction-Based 6D Pose Estimation |
| title_fullStr | RSCS6D: Keypoint Extraction-Based 6D Pose Estimation |
| title_full_unstemmed | RSCS6D: Keypoint Extraction-Based 6D Pose Estimation |
| title_short | RSCS6D: Keypoint Extraction-Based 6D Pose Estimation |
| title_sort | rscs6d keypoint extraction based 6d pose estimation |
| topic | 6D pose estimation keypoint extraction convolutional neural network Sobel operator |
| url | https://www.mdpi.com/2076-3417/15/12/6729 |
| work_keys_str_mv | AT weiyuliu rscs6dkeypointextractionbased6dposeestimation AT nandi rscs6dkeypointextractionbased6dposeestimation |