A Bionic Goal-Oriented Path Planning Method Based on an Experience Map

Brain-inspired bionic navigation is a groundbreaking technological approach that emulates the biological navigation systems found in mammalian brains. This innovative method leverages experiences within cognitive space to plan global paths to targets, showcasing remarkable autonomy and adaptability...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiang Zou, Yiwei Chen
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/5/305
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain-inspired bionic navigation is a groundbreaking technological approach that emulates the biological navigation systems found in mammalian brains. This innovative method leverages experiences within cognitive space to plan global paths to targets, showcasing remarkable autonomy and adaptability to various environments. This work introduces a novel bionic, goal-oriented path planning approach for mobile robots. First, an experience map is constructed using NeuroSLAM, a bio-inspired simultaneous localization and mapping method. Based on this experience map, a successor representation model is then developed through reinforcement learning, and a goal-oriented predictive map is formulated to address long-term reward estimation challenges. By integrating goal-oriented rewards, the proposed algorithm efficiently plans optimal global paths in complex environments for mobile robots. Our experimental validation demonstrates the method’s effectiveness in experience sequence prediction and goal-oriented global path planning. The comparative results highlight its superior performance over traditional Dijkstra’s algorithm, particularly in terms of adaptability to environmental changes and computational efficiency in optimal global path generation.
ISSN:2313-7673